4 research outputs found

    NaRALap: augmented reality system for navigation in laparoscopic surgery

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11548-011-0579-z.The AR system has a good resolution and currently is used for the placement of the trocars. Possible improvements will be performed to make the system independent of the camera position or to use natural marks. The biomechanical model and the AR algorithms will be combined with a tracker, for tracking the surgical instruments, in order to implement a valid system for liver biopsies. It will take into account the deformation due to the pneumoperitoneum and due to the breath of the patient. To develop the navigator that will guide the laparoscopic interventions, both AR system and biomechanical model will be combined with the laparoscopic camera in order to make an easier environment with only one vision in a 2D monitor.This work has been supported by the project MITYC (ref. TSI020100-2009-189). We would like to express our deep gratitude to the Hospital Clínica Benidorm for its participation in this project.López-Mir, F.; Martínez Martínez, F.; Fuertes Cebrián, JJ.; Lago, MA.; Rupérez Moreno, MJ.; Naranjo Ornedo, V.; Monserrat Aranda, C. (2011). NaRALap: augmented reality system for navigation in laparoscopic surgery. International Journal of Computer Assisted Radiology and Surgery. 6:98-99. https://doi.org/10.0.3.239/s11548-011-0579-zS9899

    Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment

    Get PDF
    Purpose. This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Method. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Results and Conclusion. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment) were involved in these experiments.The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery.This work has been supported by Centro para el Desarrollo Tecnologico Industrial (CDTI) under the project Oncotic (IDI-20101153) and the Hospital Clinica Benidorm(HCB) and partially supported by the Ministry of Education and Science of Spain (TIN2010-20999-C04-01), the project Consolider-C (SEJ2006-14301/PSIC) and the "CIBER of Physiopathology of Obesity Nutrition, an initiative of ISCIII" Prometheus and Excellence Research Program (Generalitat Valenciana, Department of Education, 2008-157). The authors would like to express their gratitude to the Hospital Clinica Benidorm and to the Hospital Univeritari i Politecnic la Fe (especially the surgical team) for their participation and involvement in this work.López-Mir, F.; Naranjo Ornedo, V.; Fuertes Cebrián, JJ.; Alcañiz Raya, ML.; Bueno, J.; Pareja, E. (2013). Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment. BioMed Research International. 2013:1-12. https://doi.org/10.1155/2013/758491S1122013Rowe, C. K., Pierce, M. W., Tecci, K. C., Houck, C. S., Mandell, J., Retik, A. B., & Nguyen, H. T. (2012). A Comparative Direct Cost Analysis of Pediatric Urologic Robot-Assisted Laparoscopic Surgery Versus Open Surgery: Could Robot-Assisted Surgery Be Less Expensive? Journal of Endourology, 26(7), 871-877. doi:10.1089/end.2011.0584Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385. doi:10.1162/pres.1997.6.4.355Shuhaiber, J. H. (2004). Augmented Reality in Surgery. Archives of Surgery, 139(2), 170. doi:10.1001/archsurg.139.2.170Kersten-Oertel, M., Jannin, P., & Collins, D. L. (2012). DVV: A Taxonomy for Mixed Reality Visualization in Image Guided Surgery. IEEE Transactions on Visualization and Computer Graphics, 18(2), 332-352. doi:10.1109/tvcg.2011.50Cannon, J. W., Stoll, J. A., Selha, S. D., Dupont, P. E., Howe, R. D., & Torchiana, D. F. (2003). Port placement planning in robot-assisted coronary artery bypass. IEEE Transactions on Robotics and Automation, 19(5), 912-917. doi:10.1109/tra.2003.817502Adhami, L., & Coste-Manirei, E. (2003). Optimal planning for minimally invasive surgical robots. IEEE Transactions on Robotics and Automation, 19(5), 854-863. doi:10.1109/tra.2003.817061Bichlmeier, C., Heining, S. M., Feuerstein, M., & Navab, N. (2009). The Virtual Mirror: A New Interaction Paradigm for Augmented Reality Environments. IEEE Transactions on Medical Imaging, 28(9), 1498-1510. doi:10.1109/tmi.2009.2018622Feuerstein, M., Mussack, T., Heining, S. M., & Navab, N. (2008). Intraoperative Laparoscope Augmentation for Port Placement and Resection Planning in Minimally Invasive Liver Resection. IEEE Transactions on Medical Imaging, 27(3), 355-369. doi:10.1109/tmi.2007.907327Abdominal and Laparoscopic Surgery. (2010). International Journal of Computer Assisted Radiology and Surgery, 5(S1), 122-130. doi:10.1007/s11548-010-0446-3Ferrari, V., Megali, G., Troia, E., Pietrabissa, A., & Mosca, F. (2009). A 3-D Mixed-Reality System for Stereoscopic Visualization of Medical Dataset. IEEE Transactions on Biomedical Engineering, 56(11), 2627-2633. doi:10.1109/tbme.2009.2028013McSherry, C. K. (1989). Cholecystectomy: The gold standard. The American Journal of Surgery, 158(3), 174-178. doi:10.1016/0002-9610(89)90246-8Kum, C.-K., Eypasch, E., Aljaziri, A., & Troidl, H. (1996). Randomized comparison of pulmonary function after the ‘French’ and ‘American’ techniques of laparoscopic cholecystectomy. British Journal of Surgery, 83(7), 938-941. doi:10.1002/bjs.1800830716Mischkowski, R. A., Zinser, M. J., Kübler, A. C., Krug, B., Seifert, U., & Zöller, J. E. (2006). Application of an augmented reality tool for maxillary positioning in orthognathic surgery – A feasibility study. Journal of Cranio-Maxillofacial Surgery, 34(8), 478-483. doi:10.1016/j.jcms.2006.07.862Kawamata, T., Iseki, H., Shibasaki, T., & Hori, T. (2002). Endoscopic Augmented Reality Navigation System for Endonasal Transsphenoidal Surgery to Treat Pituitary Tumors: Technical Note. Neurosurgery, 50(6), 1393-1397. doi:10.1097/00006123-200206000-00038Vogt, S., Khamene, A., & Sauer, F. (2006). Reality Augmentation for Medical Procedures: System Architecture, Single Camera Marker Tracking, and System Evaluation. International Journal of Computer Vision, 70(2), 179-190. doi:10.1007/s11263-006-7938-1Nicolau, S., Soler, L., Mutter, D., & Marescaux, J. (2011). Augmented reality in laparoscopic surgical oncology. Surgical Oncology, 20(3), 189-201. doi:10.1016/j.suronc.2011.07.002Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. doi:10.1109/34.888718Martín-Gutiérrez, J., Luís Saorín, J., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77-91. doi:10.1016/j.cag.2009.11.003Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. doi:10.1137/011103

    Diseño e implementación de un sistema de ayuda clínica para la realización de operaciones laparoscópicas mediante el uso de realidad aumentada

    Full text link
    [EN] This work seeks the design and software development that consists of an Augmented Reality system to provide the surgeons with help when a keyhole surgery is being performed. Performance and accuracy validation are shown. ([ES] Este trabajo busca el diseño e implementación de un sistema de Realidad Aumentada para la asistencia en cirugía abdominal que permita la localización precisa de los puntos de inserción. Se analiza su funcionamiento y se valida la precisión obtenida.Fuertes Cebrián, JJ. (2013). Diseño e implementación de un sistema de ayuda clínica para la realización de operaciones laparoscópicas mediante el uso de realidad aumentada. http://hdl.handle.net/10251/43443Archivo delegad
    corecore