12 research outputs found

    Lead in terrestrial game birds from Spain

    Full text link
    [EN] We analysed exposure to Pb and its relationship with lead-based ammunition in seven species of terrestrial game birds-common woodpigeon (Columba palumbus), rock dove (Columba livia), stock dove (Columba oenas), European turtle-dove (Streptopelia turtur), red-legged partridge (Alectoris rufa), Barbary partridge (Alectoris barbara) and common quail (Coturnix coturnix)-from rural and urban areas in different parts of Spain (Valencia, Castilla-La Mancha, Castilla y Leon, Madrid, Islas Canarias and Navarra). A total of 530 liver samples were analysed, and the presence of Pb pellets was studied in the crop, gizzard and intestine; the state and appearance of these organs were also analysed. The number of specimens suspected to have ingested Pb shot was 28 (5.6%), and the geometric mean concentration of hepatic Pb was 0.054 mu g g(-1) (wet weight, ww). A low percentage of samples (4.8%) were above the abnormal exposure threshold (0.65 mu g g(-1) ww), and, in these specimens, renal Pb concentrations were determined. Common woodpigeons and rock doves from Madrid were found to have high concentrations of Pb in their livers, and, so, both species can be considered to be good bioindicators of Pb contamination in rural (common woodpigeons) and urban (rock doves) environments. Partridges bred for hunting may be more prone to ingesting pellets from the environment, a fact that should be taken into account in management decisions.This study was funded by the Spanish Sectoral Federation of Weapons and Ammunition (FSA). The authors would like to thank Miguel A. Sanchez Isarria for his help in collecting samples, to Valentin Urrutia and Inma Salvat for their help in processing the samples, to Alberto Ferrer (Departamento de Estadistica e Investigacion Operativa Aplicadas y Calidad, Universidad Politecnica de Valencia) for the statistical treatment of the data, and to the Department of Animal Surgery at the Veterinary Clinical Hospital of the University of Murcia for conducting the X-ray analyses of the samples.Romero, D.; De Jose, A.; Theureau De La Peña, JM.; Ferrer Gisbert, A.; Raigón Jiménez, MD.; Torregrosa Soler, JB. (2020). Lead in terrestrial game birds from Spain. Environmental Science and Pollution Research. 27(2):1585-1597. https://doi.org/10.1007/s11356-019-06827-yS15851597272Ákoshegyi I (1997) Lead poisoning of pheasants caused by lead shots. Magy Allatorvosok Lapja 119(6):328–330Anger H (1971) Gamebird diseases. The Game Conservancy Trust Annual Review 2:51–53Antonio García MT, Martínez-Conde E, Corpas-Vázquez I (1988) Lead levels of feral pigeons (Columba livia) from Madrid (Spain). Environ Pollut 54:89–96Argyropoulos G, Manoli E, Kouras A, Samara C (2012) Concentrations and source apportionment of PM10 and associated major and trace elements in the Rhodes Island, Greece. Sci Total Environ 432:12–22. https://doi.org/10.1016/j.scitotenv.2012.05.076Assi MA, Hezmee MNM, Haron AW, Sabri MY, Rajion MA (2016) The detrimental effects of lead on human and animal health. Vet World 9(6):660–671ATSDR (2014) Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine Atlanta, GA 30333 (April 2014), Support document to the 2013 priority list of hazardous substances that will be the subject of toxicological profiles. http://www.atsdr.cdc.gov/SPL/resources/ATSDR_2013_SPL_Support_Document.pdf.Bannon DI, Parsons PJ, Centeno JA, Lal S, Xu H, Rosencrance AB, Dennis WE, Johnson MS (2011) Lead and copper in pigeons (Columbia livia) exposed to a small arms–range soil. Arch Environ Contam Toxicol 60:351–360Barthalmus GT, Leander JD, Mc-Millan DE, Mushak P, Krigman MR (1977) Chronic effects of lead on schedule-controlled pigeon behavior. Toxicol Appl Pharmacol 42:271–284Berny P, Vilagines L, Cugnasse JM, Mastain O, Chollet JY, Joncour G, Razin M (2015) Vigilance poison: illegal poisoning and lead intoxication are the main factors affecting avian scavenger survival in the Pyrenees (France). Ecotoxicol Environ Saf 118:71–82Best TL, Garrison TE, Schmitt CG (1992) Availability and ingestion of lead shot by mourning doves (Zenaida macroura) in southeastern New Mexico. Southwest Nat 37:287–292Beyer WN, Franson JC, Locke LN, Stroud RK, Sileo L (1998) Retrospective study of the diagnostic criteria in a lead-poisoning survey of waterfowl. Arch Environ Contam Toxicol 35:506–512Bingham RJ, Larsen RT, Bissonette JA, Hall JO (2015) Widespread ingestion of lead pellets by wild chukars in northwestern Utah. Wildl Soc Bull 39(1):94–102Butler DA (2005) Incidence of lead shot ingestion in red-legged partridges (Alectoris rufa) in Great Britain. Vet Rec 157:661–662Butler DA, Sage RB, Draycott RAH, Carroll JP, Potts D (2005) Lead exposure in ring-necked pheasants on shooting estates in Great Britain. Wildl Soc Bull 33:583–589Cai F, Calisi RM (2016) Seasons and neighborhoods of high lead toxicity in New York City: the feral pigeon as a bioindicator. Chemosphere 161:274–279Calvert HS (1876) Pheasants poisoned by swallowing shot. The Field 47:189Carneiro MA, Oliveira PA, Brandão R, Francisco ON, Velarde R, Lavín S, Colaço B (2016) Lead poisoning due to lead-pellet ingestion in griffon vultures (Gyps fulvus) from the Iberian Peninsula. J Avian Med Surg 30(3):274–279Carpenter JW, Pattee OH, Fritts SH, Rattner BA, Wiemeyer SN, Royle JA, Smith MR (2003) Experimental lead poisoning in turkey vultures (Cathartes aura). J Wildl Dis 39(1):96–104Castrale JS (1989) Availability of spent lead shot in fields managed for mourning dove hunting. Wildl Soc Bull 17:184–189Clausen B, Wolstrup C (1979) Lead poisoning in game from Denmark. Dan Rev Game Biol 11:1–22Conti JA (1993) Diseases, parasites, and contaminants. In: Baskett TS, Sayer MW, Tomlinson RE and Mirarchi RE (eds) Ecology and management of the mourning dove. Wildlife Management Institute, Washington, D.C., USA, p: 205–224.Cui J, Wu B, Hallbrook RS, Zang S (2013) Age-dependent accumulation of heavy metals in liver, kidney and lung tissues of homing pigeons in Beijing, China. Ecotoxicology 22:1490–1497De Francisco N, Ruiz Troya JD, Agüera EI (2003) Lead and lead toxicity in domestic and free living birds. Avian Pathol 32(1):3–13DeMent SH, Julian Chisolm Jr J, Eckhaus MA, Strandberg JD (1987) Toxic lead exposure in the urban rock dove. J Wildl Dis 23(2):273–278Descalzo E, Mateo R (2018) La contaminación por munición de plomo en Europa: el plumbismo aviar y las implicaciones en la seguridad de la carne de caza. Instituto de Investigación en Recursos Cinegéticos (IREC), Ciudad Real, Spain. 82 pp.Dieter MP (1979) Blood delta-aminolevulinic acid dehydratase (ALAD) to monitor lead contamination in canvasback ducks (Aythya valisineria). In: Nielsen SWG, Migaki G, Scarpelli DG (eds) Animals as monitors of environmental pollutants. Washington, D.C., National Academy of Sciences, pp 177–191ECHA (2018) Annex XV Investigation Report. A review of the available information on lead in shot used in terrestrial environments, in ammunition and in fishing tackle. European Chemicals Agency. In: https://echa.europa.eu/-/echa-identifies-risks-to-terrestrial-environment-from-lead-ammunition.EFSA (2010) Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on lead in food. EFSA Journal 8(4), 1570, 151 pp.Ellis TW, Mirza AH (2010) The refining of secondary lead for use in advanced lead- acid batteries. J Power Sources 195(14):4525–4529Ferrandis P, Mateo R, López-Serrano FR, Martínez-Haro M, Martínez-Duro E (2008) Lead-shot exposure in red-legged partridge (Alectoris rufa) on a driven shooting estate. Environ Sci Technol 42:6271–6277Fisher IJ, Pain DJ, Thomas VG (2006) A review of lead poisoning from ammunition sources in terrestrial birds. Biol Conserv 131:421–432Fontoura A, Gonçalves D, Guyomarc'h JC, Saint-Jalme M (2000) La sexualité précoce des populations hivernantes de Cailles des blés. Cah d'Ethologie 20:21–34Franson JC, Pain DJ (2011) Lead in birds. In: Nelson W Beyer & Meadorv JP (eds) Environmental contaminants in biota: interpreting tissue concentrations, 2nd edn. CRC, Boca Raton, pp 563–593Geochemical Atlas of Spain (2019) Geological and Mining Institute of Spain, Government of Spain’s Ministry of Science, Innovation and Universities. http://info.igme.es/geoquimica/ (accessed May 15, 2019).Guitart R, To-Figueras J, Mateo R, Bertolero A, Cerradelo S, Martínez-Vilalta A (1994) Lead poisoning in waterfowl from the Ebro Delta, Spain: calculation of lead exposure thresholds for mallards. Arch Environ Contam Toxicol 27:289–293Harrison R (2012) Lead pollution: causes and control. Springer Science & Business Media, Berlin, GermanyHolladay JP, Nisanian M, Williams S, Tuckfield RC, Kerr R, Jarrett T, Tannenbaum L, Holladay SD, Sharma A, Gogal RM Jr (2012) Dosing of adult pigeons with as little as one #9 lead pellet caused severe δ-ALAD depression, suggesting potential adverse effects in wild populations. Ecotoxicology 21(8):2331–2337. https://doi.org/10.1007/s10646-012-0989-xHolland G (1882) Pheasant poisoned by swallowing shot. The Field 59:232Hutton M, Goodman GT (1980) Metal contamination of feral pigeons Columba livia from the London area. Part I: tissue accumulation of lead cadmium and zinc. Environ Pollut Ser A 22:207–217Johansen P, Pedersen HS, Asmund G, Riget F (2006) Lead shot from hunting as a source of lead in human blood. Environ Pollut 142(1):93–97Johnson CK, Kelly TR, Rideout BA (2013) Lead in ammunition: a persistent threat to health and conservation. Ecohealth 10(4):455–464Kendall RJ, Lacher TE Jr, Bunck C, Daniel B, Driver C, Grue CE, Leighton F, Stansley W, Watanbe PG, Whitworth M (1996) An ecological risk assessment of lead shot exposure in non-waterfowl avian species: upland game birds and raptors. Environ Toxicol Chem 15:4–20Kerr R, Holladay S, Jarrett T, Selcer B, Meldrum B, Williams S, Tannenbaum L, Holladay J, Williams J, Gogal R (2010) Lead pellet retention time and associated toxicity in northern bobwhite quail (Colinus virginianus). Environ Toxicol Chem 29(12):2869–2874. https://doi.org/10.1002/etc.355Keymer IF (1958) A survey and review of the causes of mortality in British birds and the significance of wild birds as disseminators of disease. Vet Rec 70:713–720Keymer IF, Stebbings RSJ (1987) Lead poisoning in a Partridge (Perdix perdix) after ingestion of gunshot. Vet Rec 120:276–277Kreager N, Wainman BC, Jayasinghe RK, Tsuji LJS (2008) Lead pellet ingestion and liver-lead concentrations in upland game birds from Southern Ontario, Canada. Arch Environ Contam Toxicol 54:331–336Larsen RT, Flinders JT, Mitchell DL, Perkins ER (2007) Grit size preferences and confirmation of ingested lead pellets in Chukars (Alectoris chukar). West N Am Nat 67(1):152–155Locke LN, Bagley GE (1967) Lead poisoning in a sample of Maryland mourning doves. J Wildl Mgmt 31:515–518Mateo R, Baos AR, Vidal D, Camarero PR, Martinez-Haro M, Taggart MA (2011) Bioaccessibility of Pb from ammunition in game meat is affected by cooking treatment. PLoS One 6(1):e15892. https://doi.org/10.1371/journal.pone.0015892Mateo R, Green AJ, Lefranc H, Baos R, Figuerola J (2007) Lead poisoning in wild birds from southern Spain: a comparative study of wetland areas and species affected, and trends over time. Ecotoxicol Environ Saf 66:119–126Mateo R, Vallverdú-Coll N, López-Antia A, Taggart MA, Martínez-Haro M, Guitart R, Ortiz-Santaliestra ME (2014) Reducing Pb poisoning in birds and Pb exposure in game meat consumers: the dual benefit of effective Pb shot regulation. Environ Int 63:163–168Mcconnell CA (1968) Experimental lead poisoning of bobwhite quail and mourning doves. Proc Ann Conf Southeastern Assoc Game Fish Comm 21:208–219Mirarchi RE, Baskett TS (1994) Mourning dove (Zenaida macroura). In: Poole A, Gill F (eds) The birds of North America, 117. The American Ornithologist’s Union, Washington, D.C., USAMur P (2009) L'hivernage de la Caille des blés Coturnix coturnix en France. Alauda 77:103–114Nadal J, Ponz C, Comas C, Margalida A (2019) Time, geography and weather provide insights into the ecological strategy of a migrant species. Sci Total Environ 649:1096–1104. https://doi.org/10.1016/j.scitotenv.2018.08.345Nam DH, Lee DP (2006) Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci Total Environ 357:288–295Pain DJ, Cromie R, Green RE (2015) Poisoning of birds and other wildlife from ammunition-derived lead in the UK. In: Delahay RJ and Spray CJ (eds.) Proceedings of the Oxford Lead Symposium Lead Ammunition: understanding and minimising the risks to human and environmental health, 58–83.Pain DJ, Cromie RL, Newth J, Brown MJ, Crutcher E, Hardman P, Hurst L, Mateo R, Meharg AA, Moran AC, Raab A, Taggart MA, Green RE (2010) Potential hazard to human health from exposure to fragments of lead bullets and shot in the tissues of game animals. PLoS One 5(4):e10315. https://doi.org/10.1371/journal.pone.0010315Pain DJ, Fisher IJ, Thomas VG (2009) A global update of lead poisoning in terrestrial birds from ammunition sources. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, Idaho, USA, pp 99–118Pain DJ, Mateo R, Green RE (2019) Effects of lead from ammunition on birds and other wildlife: a review and update. Ambio. 48:935–953. https://doi.org/10.1007/s13280-019-01159-0Pattee OH, Carpenter JW, Fritts SH, Rattner BA, Wiemeyer SN, Royle JA, Smith MR (2006) Lead poisoning in captive Andean condors (Vultur gryphus). J Wildl Dis 42(4):772–779Pattee OH, Pain DJ (2003) Lead in the environment. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) Handbook of ecotoxicology, Second edn. CRC Press, Boca Raton, Florida, USA, pp 373–408Patrick L (2006) Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Altern Med Rev 11(1):2–22Peña-Fernández A, Lobo-Bedmar MC, González-Muñoz MJ (2015) Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain). Environ Res 136:40–46Pokras MA, Kneeland MR (2009) Understanding lead uptake and effects across species lines: a conservation medicine based approach. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, Idaho, USA, pp 7–22Potts GR (2005) Incidence of ingested lead gunshot in wild Grey Partridge (Perdix perdix) from the UK. Eur J Wildl Res 51:31–34Schilderman PAEL, Hoogewerff JA, Schooten FJV, Maas LM, Moonen EJC, Os BJHV, Wijnen JHV, Kleinjans JCS (1997) Possible relevance of pigeons as an indicator species for monitoring air pollution. Environ Health Perspect 3(105):322–330Schulz JH, Millspaugh JJ, Washburn BE, Wester GR, Lanigan JT III, Franson JC (2002) Spentshot availability and ingestion on areas managed for mourning doves. Wildl Soc Bull 30:112–120Soler-Rodríguez F, Oropesa-Jiménez AL, García-Cambero JP, Pérez-López M (2004) Lead exposition by gunshot ingestion in red-legged Partridge (Alectoris rufa). Vet Hum Toxicol 46:133–134Shotyk W, Le Roux G (2005) Biogeochemistry and cycling of lead. Met Ions Biol Syst 43:239–275Steinnes E (2013) Lead. In: Alloway B (ed) Heavy metals in soils. Environmental pollution, vol 22. Springer, Dordrecht.Tokar EJ, Boyd WA, Freedman JH, Waalkes MP (2013) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, New York, pp 981–1030Tranel MA, Kimmel RO (2009) Impacts of lead ammunition on wildlife, the environment, and human health—a literature review and implications for Minnesota. In: Watson RT, Fuller M, Pokras M, Hunt WG (eds) Ingestion of lead from spent ammunition: implications for wildlife and humans. The Peregrine Fund, Boise, Idaho, USA, pp 318–337US EPA (2003) United States Environmental Protection Agency. National air quality and emissions trends report—2003 special studies edition. EPA/454/R-03/005. Research Triangle Park, North Carolina, p 277US EPA (2014) United States Environmental Protection Agency. List of priority pollutants. URL https://www.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf.Walter H, Reese KP (2003) Fall diet of chukars (Alectoris chukar) in eastern Oregon and discovery of ingested lead pellets. West N Am Nat 63(3):402–405Watson M (2004) The effects of raptors on grey partridge populations. University of Oxford, DPhil ThesisWilliams RJ, Holladay SD, Williams SM, Gogal RM Jr (2017) Environmental lead and wild birds: a review. Rev Environ Contam Toxicol 245:157–180Yamamoto K, Hayashi M, Yoshimura M, Hayashi H, Hiratsuka A, Lsii Y (1993) The prevalence and retention of lead pellets in Japanese quail. Arch Environ Contam Toxicol 24:478–482Zhang W, Yang J, Wu X, Hu Y, Yu W, Wang J, Dong J, Li M, Liang S, Hu J, Kumar RV (2016) A critical review on secondary lead recycling technology and its prospect. Renew Sust Energ Rev 61:108–12

    A new photovoltaic floating cover system for water reservoirs

    Full text link
    This paper describes a new photovoltaic floating cover system for water reservoirs developed jointly by the company CELEMIN ENERGY and the Universidad Politecnica de Valencia. The system consists of polyethylene floating modules which, with the use of tension producing elements and elastic fasteners, are able to adapt to varying reservoir water levels. A full-scale plant located near Alicante (Spain) was built in an agriculture reservoir to study the behaviour of the system. The top of the reservoir has a surface area of 4700 m(2) but only 7% of such area has been covered with the fixed solar system. The system also minimizes evaporation losses from water reservoirs. (C) 2013 Elsevier Ltd. All rights reserved.The English revision of this paper was funded by the Universidad Politecnica de Valencia, Spain.Ferrer Gisbert, CM.; Ferran Gozalvez, JJ.; Redón Santafé, M.; Ferrer-Gisbert, P.; Sánchez-Romero, F.; Torregrosa Soler, JB. (2013). A new photovoltaic floating cover system for water reservoirs. Renewable Energy. (60):63-70. doi:10.1016/j.renene.2013.04.007S63706

    Project and Design of a Special Agricultural Warehouse Developed in Phases in Valencia (Spain)

    Full text link
    [EN] This article describes the developing phases to build warehouses for a Pomelo Company at Valencian County (East of Spain). The warehouses are remarkable because they did not have many intermediate columns. Spatial and lightweight solutions are adopted and described. In the Projects also natural ventilation and lighting have been considered with a successfully result. Erection conditions and Regulations have been taken also account. It has been an inspiration motive for other consultants.Ferrer Gisbert, CM.; Ferrer-Gisbert, P.; Ferran Gozalvez, JJ.; Redón-Santafé, M.; Torregrosa Soler, JB.; Sánchez-Romero, F. (2020). Project and Design of a Special Agricultural Warehouse Developed in Phases in Valencia (Spain). Current Trends in Civil & Structural Engineering. 5(5):1-8. https://doi.org/10.33552/CTCSE.2020.05.000623S185

    Resistencia al fuego de pórticos simples de acero a dos aguas

    Get PDF
    [ES] El método habitual de análisis en situación de incendio consiste en el cálculo simplificado de barras aisladas. Es conservador al aplicarse a estructuras con capacidad de redistribuir esfuerzos. Se desconoce el tipo de fallo que afecta a la seguridad de las personas y extensión del fuego. Se utiliza el análisis avanzado para obtener el comportamiento a fuego de un pórtico simple a dos aguas de acero conforme a la normativa española. Se establece una metodología mediante un programa de cálculo estructural de propósito general (SAP2000), con un análisis dinámico no lineal del material (plástico) y geométrico (P-Delta y grandes desplazamientos), y propiedades mecánicas y térmicas dependientes de la temperatura. Se analizan los diferentes tipos de colapso. Se efectúan estudios paramétricos sobre la influencia de la rigidez de la base, protección de los soportes y cargas actuantes. Este cálculo puede permitir justificar mayores tiempos de resistencia al fuego que el análisis simplificado de barras.[EN] The standard procedure of structural fire design is based on the simplified analysis of single members. This method leads to conservative results in the case of structures able to redistribution of forces. The failure mechanism affecting both life safety and fire propagation is unknown. This work proposes a methodology for the advanced fire calculation of single pitched-roof portal frame for an agroindustrial building according to the Spanish Specifications with the structural software SAP2000. A non-linear dynamic and plastic, geometric (P-Delta and large-displacements) calculation method has been developed. The different failure mechanisms and their influence are studied in terms of fire time resistance, human hazard and good safety. Also, parametric analyses were conducted: load level, rotational stiffness of the base and finally, support fire protection.Ferran Gozalvez, JJ.; Ferrer Gisbert, CM.; Redón-Santafé, M.; Sánchez-Romero, F.; Torregrosa Soler, JB. (2017). Fire resistance of single pitched-roof steel portal frame. Informes de la Construcción. 69(545):1-11. doi:10.3989/ic.15.089S11169545Kretzberg, J., Kretschmer, F., & Marin-Burgin, A. (2007). Effects of multiple spike-initiation zones in touch sensory cells of the leech. Neurocomputing, 70(10-12), 1645-1651. doi:10.1016/j.neucom.2006.10.04

    Evaluación retroactiva mediante uso de pruebas objetivas tipo test

    Full text link
    [EN] The evaluation by open written exam, traditionally used, it has been reconverted to test type exam. These tests have allowed a better knowledge of the acquisition of the fundamental concepts of the subject, in addition to allowing objectively its correction. The realization of this type of exams previously to parts of the subject where practical concepts are based on theoretical concepts,it has allowed a better approach to the contents and a feedback based on the results and perception of the teaching staff[ES] La evaluación mediante prueba escrita de tipo abierta, utilizada tradicionalmente, ha sido reconvertida a pruebas tipo test. Estas pruebas han permitido un mejor conocimiento de la adquisición de los conceptos fundamentales de la asignatura, además de permitir de manera objetiva su corrección. La realización de este tipo de pruebas previamente a partes de la asignatura donde se utilizan conceptos prácticos basados en conceptos teóricos necesarios, ha permitido un mejor enfoque de los contenidos y una retroalimentación basada en los resultados y percepción del profesorado.Sánchez Romero, FJ.; Ferrer Gisbert, CM.; Redón Santafé, M.; Torregrosa Soler, JB.; Ferran Gozalvez, JJ. (2019). Evaluación retroactiva mediante uso de pruebas objetivas tipo test. En IN-RED 2019. V Congreso de Innovación Educativa y Docencia en Red. Editorial Universitat Politècnica de València. 833-838. https://doi.org/10.4995/INRED2019.2019.10452OCS83383

    IMPLEMENTATION OF A PHOTOVOLTAIC FLOATING COVER FOR IRRIGATION RESERVOIRS

    Full text link
    [EN] The article presents the main features of a floating photovoltaic cover system (FPCS) for water irrigation reservoirs whose purpose is to reduce the evaporation of water while generating electrical power. The system consists of polyethylene floating modules which are able to adapt to varying reservoir water levels by means of tension bars and elastic fasteners. (C) 2013 Elsevier Ltd. All rights reserved.Redón-Santafé, M.; Ferrer-Gisbert, P.; Sánchez-Romero, F.; Torregrosa Soler, JB.; Ferran Gozalvez, JJ.; Ferrer Gisbert, CM. (2014). IMPLEMENTATION OF A PHOTOVOLTAIC FLOATING COVER FOR IRRIGATION RESERVOIRS. Journal of Cleaner Production. 66:568-570. doi:10.1016/j.jclepro.2013.11.006S5685706

    Durability of reinforced PVC-P geomembranes installed in reservoirs in eastern Spain

    Full text link
    [EN] The aim of this paper is to study the durability of polyvinyl chloride (PVC-P) geomembranes reinforced with a synthetic fabric in hydraulic works in the Spanish Mediterranean basin. Therefore, a set of six geomembranes installed in irrigation reservoirs for 18¿31 years were analysed. The initial characteristics of the geomembranes were determined to verify fulfilment of the Spanish regulations in force at the time. The characteristics were then assessed, and the results were interpreted with reference to the loss of plasticisers, tensile characteristics, foldability at low temperatures, dynamic impact resistance, puncture resistance, seam strength, reflected optical microscopy (ROM) and scanning electron microscopy (SEM). Additionally, the identification of the plasticisers in the geomembranes involved Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC) and mass spectrometry (MS) tests. For the analysed samples, the loss of plasticisers was significant, ranging from 71.0% to 84.3%. However, the tensile strength results indicated current, regular waterproof working performances in the reservoirs. The results suggest that the durability of PVC-P geomembranes is a function of the loss of plasticisers and the state of the synthetic reinforced fibres.Blanco, M.; Touze-Foltz, N.; Pérez-Sánchez, M.; Redón-Santafé, M.; Sánchez-Romero, F.; Torregrosa Soler, JB.; Zapata Raboso, FA. (2018). Durability of reinforced PVC-P geomembranes installed in reservoirs in eastern Spain. Geosynthetics International. 25(1):85-97. https://doi.org/10.1680/jgein.17.00035S859725

    Contribution to the geometric characterization of Agricultural Water Reservoirs as a tool for the calculation of sustainability indicators

    Get PDF
    [SPA] Las balsas a diferencia de las presas presentan desde un punto de vista geométrico elementos y formas similares que pueden ser estudiadas y caracterizadas para la obtención de relaciones y expresiones útiles para la planificación y análisis de diferentes aspectos. En el presente artículo se pretende recopilar y analizar las diferentes relaciones geométricas en balsas. En primer lugar, se realiza una recopilación con las relaciones entre las diferentes variables encontradas en la bibliografía especializada. A partir de la información recopilada por la Generalitat Valenciana de aproximadamente unas 50 balsas, se han obtenido diferentes relaciones entre las variables. Estas relaciones permiten que de una manera aproximada y en fase de predimensionado de una balsa o gestión del territorio, la estimación rápida de diferentes parámetros como la superficie ocupada en función del volumen, superficie impermeabilizada y otro tipo de variables útiles tanto para los proyectistas, gestores y Comunidades de Regantes. El desarrollo y utilización de este tipo de herramientas analíticas debe permitir la caracterización de este tipo de infraestructura dentro de los sistemas hidráulicos, proporcionando indicadores que permitan una mejor planificación y gestión en base a Objetivos de desarrollo Sostenible. [ENG] The Agricultural Water Reservoirs, unlike dams, present from a geometrical point of view similar elements and shapes that can be studied and characterized in order to obtain relations and expressions useful for the planning and analysis of different aspects. In this article we intend to compile and analyze the different geometric relationships in Agricultural Water Reservoirs. First of all, a compilation of the relationships between the different variables found in the specialized literature is made. From the information compiled by the Generalitat Valenciana of approximately 50 Agricultural Water Reservoirs, different relationships between the variables have been obtained. These relationships allow, in an approximate way and in the pre-dimensioning phase of a Agricultural Water Reservoirs or management of the territory, the fast estimation of different parameters such as the occupied surface in function of the volume, waterproofed surface and other types of useful variables for designers, managers and Irrigation Communities. The development and use of this type of analytical tools should allow the characterization of this type of infrastructure within the hydraulic systems, providing indicators that allow better planning and management based on Sustainable Development Objectives

    Reflections on the elaboration and implementation of emergency plans in agricultural water reservoirs

    Get PDF
    [SPA] Las balsas de tierra impermeabilizadas con geomembranas son obras muy seguras, tanto por la tipología constructiva empleada, como por su tipo de explotación, tal y como demuestra la experiencia y la escasez de incidencias. En cualquier caso, se debe ser consciente que cualquier infraestructura puede colapsar y causar daños, y en el peor de los casos la pérdida de vidas humanas. Aunque la probabilidad de colapso nula no existe, es obligación tanto de los usuarios, técnicos implicados el intentar conseguirla. El desarrollo de las sociedades exige mayores niveles de seguridad, y en este sentido tanto para las balsas de tierra como para cualquier otro tipo de infraestructura, las exigencias en seguridad cada vez son mayores. La seguridad en las balsas de tierra viene determinada por tres pilares fundamentales que son: 1. Criterios de proyecto y control durante la ejecución, en ciertos puntos críticos. 2. Mantenimiento de la seguridad a lo largo del tiempo, lo que requiere de unos planes eficaces de Vigilancia y Mantenimiento, dentro de unas normas de Explotación, acordes con las entidades titulares que las tienen que implementar. 3. En el peor de los casos, la infraestructura puede fallar, por lo que interesa analizar cuáles serían sus consecuencias y hacerlo con el suficiente detalle para que puedan adoptarse medidas eficaces que aminores, e incluso anulen los daños, y en especial de vidas humanas. Esta preocupación por la seguridad en las balsas se vio establecida con la inclusión de las balsas en el Real Decreto 9/2008. Una mala concepción de la seguridad en balsas ha querido trasladar a estas infraestructuras, los criterios y planteamientos de las presas, lo cual ha provocado una gran confusión, tanto administrativa como técnica, e incluso un rechazo del sector a la exigencia del establecimiento de un marco normativo para este tipo de infraestructuras. En la presente ponencia se establecen una serie de reflexiones sobre los contenidos de los Planes de Emergencia, estableciendo la diferencia entre su aplicación a presas y balsas, las implicaciones sociales que pueden derivarse de los mismos, así como cuáles deben ser los criterios a seguir para incrementar la seguridad real de las balsas. [ENG] Agricultural Water Reservoirs waterproofed with geomembranes are very safe works, both because of the construction technology used and the type of operation, as shown by experience and the scarcity of incidents. In any case, one must be aware that any infrastructure can collapse and cause damage, and in the worst case, the loss of human lives. Although the probability of zero collapse does not exist, it is the obligation of both the users and the technicians involved to try to achieve it. The development of societies demands higher levels of safety, and in this sense, both for Agricultural Water Reservoirs and for any other type of infrastructure, the safety requirements are increasingly higher. Safety in Agricultural Water Reservoir is determined by three fundamental pillars: 1. Criteria for design and control during execution, at certain critical points. 2. Maintenance of safety over time, which requires effective surveillance and maintenance plans, within the framework of operating standards, in accordance with the entities that have to implement them. 3. In the worst case scenario, the infrastructure may fail, so it is important to analyze the consequences and to do so in sufficient detail so that effective measures can be adopted to reduce or even eliminate the damage, especially in terms of human lives. This concern for raft safety was established with the inclusion of rafts in Royal Decree 9/2008. A bad conception of safety in Agricultural Water Reservoir has wanted to transfer to these infrastructures, the criteria and approaches of dams, which has caused great confusion, both administrative and technical, and even a rejection of the sector to the demand for the establishment of a regulatory framework for this type of infrastructure. This paper sets out a series of reflections on the contents of the Emergency Plans, establishing the difference between their application to dams and agricultural reservoirs, the social implications that may derive from them, as well as the criteria to be followed in order to increase the real safety of reservoirs

    New functions of the irrigation reservoirs in a transition towards a more sustanaible agriculture, in the Province of Alicante (Spain)

    Get PDF
    [SPA] Son bien conocidas las funciones de las balsas de tierra, como infraestructuras imprescindibles en la modernización, consolidación y sostenibilidad de regadíos, desde finales de los años 60 del siglo pasado. Actualmente, dichas funciones están plenamente vigentes, pero además, se amplían las mismas como infraestructuras básicas para la regulación de recursos en el ámbito comarcal, independientemente de su origen. Las nuevas funciones que cumplirán las balsas son: Regulación de volúmenes de aguas superficiales, derivadas de ríos, sin interferir en las dinámicas naturales de los mismos. Acoplar la oferta y la demanda de aguas residuales y desaladas, haciendo posible, además, la utilización de fuentes de energía renovables. Contribuir como micro-humedales, en combinación con la actividad agraria, en el aumento de la biodiversidad [ENG] The functions of earth reservoirs are well known, as essential infrastructures in the modernization, consolidation and sustainability of irrigation systems, since the end of the 60s of the last century. Currently, these functions are fully in force, but they are also expanded as basic infrastructures for the regulation of resources at the regional level, regardless of their origin. The new functions that the earth reservoirs will fulfill are: Regulation of surface water volumes derived from rivers, without interfering with their natural dynamics. Coupling the supply and demand of wastewater and desalinated, also making possible the use of renewable energy sources. Contribute as micro-wetlands, in combination with agricultural activity, in increasing biodiversity
    corecore