2 research outputs found

    Isolation and Structural Characterization of Bioactive Molecules on Prostate Cancer from Mayan Traditional Medicinal Plants

    No full text
    Prostate cancer is the most common cancer in men around the world. It is a complex and heterogeneous disease in which androgens and their receptors play a crucial role in the progression and development. The current treatment for prostate cancer is a combination of surgery, hormone therapy, radiation and chemotherapy. Therapeutic agents commonly used in the clinic include steroidal and non-steroidal anti-androgens, such as cyproterone acetate, bicalutamide and enzalutamide. These few agents have multiple adverse effects and are not 100% effective. Several plant compounds and mixtures, including grape seed polyphenol extracts, lycopene and tomato preparations, soy isoflavones, and green tea extracts, have been shown to be effective against prostate cancer cell growth. In vivo activity of some isolated compounds like capsaicin and curcumin was reported in prostate cancer murine models. We prepared a library of plant extracts from traditional Mayan medicine. These plants were selected for their use in the contemporaneous Mayan communities for the treatment of different diseases. The extracts were assessed in a phenotypic screening using LNCaP prostate cancer androgen sensitive cell line, with a fixed dose of 25 μg/mL. MTT assay identified seven out of ten plants with interesting anti-neoplastic activity. Extracts from these plants were subjected to a bioguided fractionation to study their major components. We identified three compounds with anti-neoplastic effects against LNCaP cells, one of which shows selectivity for neoplastic compared to benign cells

    Current Status of Regulatory Non-Coding RNAs Research in the Tritryp

    Get PDF
    Trypanosomatids are protozoan parasites that cause devastating vector-borne human diseases. Gene expression regulation of these organisms depends on post-transcriptional control in responding to diverse environments while going through multiple developmental stages of their complex life cycles. In this scenario, non-coding RNAs (ncRNAs) are excellent candidates for a very efficient, quick, and economic strategy to regulate gene expression. The advent of high throughput RNA sequencing technologies show the presence and deregulation of small RNA fragments derived from canonical ncRNAs. This review seeks to depict the ncRNA landscape in trypanosomatids, focusing on the small RNA fragments derived from functional RNA molecules observed in RNA sequencing studies. Small RNA fragments derived from canonical ncRNAs (tsRNAs, snsRNAs, sdRNAs, and sdrRNAs) were identified in trypanosomatids. Some of these RNAs display changes in their levels associated with different environments and developmental stages, demanding further studies to determine their functional characterization and potential roles. Nevertheless, a comprehensive and detailed ncRNA annotation for most trypanosomatid genomes is still needed, allowing better and more extensive comparative and functional studies
    corecore