2,964 research outputs found

    NLO QCD corrections to Single Top and W associated production at the LHC with forward detector acceptances

    Full text link
    In this paper we study the Single Top and W boson associated photoproduction via the main reaction pp→pγp→pW±t+Y\rm pp\rightarrow p\gamma p\rightarrow pW^{\pm}t+Y at the 14 TeV Large Hadron Collider (LHC) up to next-to-leading order (NLO) QCD level assuming a typical LHC multipurpose forward detector. We use the Five-Flavor-Number Schemes (5FNS) with massless bottom quark assumption in the whole calculation. Our results show that the QCD NLO corrections can reduce the scale uncertainty. The typical K-factors are in the range of 1.15 to 1.2 which lead to the QCD NLO corrections of 15% to 20% correspond to the leading-order (LO) predictions with our chosen parameters.Comment: 41pages, 12figures. arXiv admin note: text overlap with arXiv:1106.2890 by other author

    Effects of Vanadium doping on BaFe2As2

    Full text link
    We report an investigation of the structural, magnetic and electronic properties of Ba(Fe(1-x)V(x))2As2 using x-ray, transport, magnetic susceptibility and neutron scattering measurements. The vanadium substitutions in Fe sites are possible up to 40\%. Hall effect measurements indicate strong hole-doping effect through V doping, while no superconductivity is observed in all samples down to 2K. The antiferromagnetic and structural transition temperature of BaFe2As2 is gradually suppressed to finite temperature then vanishes at x=0.245 with the emergence of spin glass behavior, suggesting an avoided quantum critical point (QCP). Our results demonstrate that the avoided QCP and spin glass state which were previously reported in the superconducting phase of Co/Ni-doped BaFe2As2 can also be realized in non-superconducting Ba(Fe(1-x)V(x))2As2.Comment: 5 pages, 6 figure

    Galactic Disk Bulk Motions as Revealed by the LSS-GAC DR2

    Full text link
    We report a detailed investigation of the bulk motions of the nearby Galactic stellar disk, based on three samples selected from the LSS-GAC DR2: a global sample containing 0.57 million FGK dwarfs out to ∼\sim 2 kpc, a local subset of the global sample consisting ∼\sim 5,400 stars within 150 pc, and an anti-center sample containing ∼\sim 4,400 AFGK dwarfs and red clump stars within windows of a few degree wide centered on the Galactic anti-center. The global sample is used to construct a three-dimensional map of bulk motions of the Galactic disk from the solar vicinity out to ∼\sim 2 kpc with a spatial resolution of ∼\sim 250 pc. Typical values of the radial and vertical components of bulk motion range from −-15 km s−1^{-1} to 15 km s−1^{-1}, while the lag behind the circular speed dominates the azimuthal component by up to ∼\sim 15 km s−1^{-1}. The map reveals spatially coherent, kpc-scale stellar flows in the disk, with typical velocities of a few tens km s−1^{-1}. Bending- and breathing-mode perturbations are clearly visible, and vary smoothly across the disk plane. Our data also reveal higher-order perturbations, such as breaks and ripples, in the profiles of vertical motion versus height. From the local sample, we find that stars of different populations exhibit very different patterns of bulk motion. Finally, the anti-center sample reveals a number of peaks in stellar number density in the line-of-sight velocity versus distance distribution, with the nearer ones apparently related to the known moving groups. The "velocity bifurcation" reported by Liu et al. (2012) at Galactocentric radii 10--11 kpc is confirmed. However, just beyond this distance, our data also reveal a new triple-peaked structure.Comment: 27 pages, 17 figures, Accepted for publication in a special issue of Research in Astronomy and Astrophysics on LAMOST science
    • …
    corecore