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ABSTRACT
The drug 2-hydroxypropyl-b-cyclodextrin (HPbCD) reduces lysosomal cholesterol accumulation in
Niemann-Pick disease, type C (NPC) and has been advanced to human clinical trials. However, its
mechanism of action for reducing cholesterol accumulation in NPC cells is uncertain and its molecular
target is unknown. We found that methyl-b-cyclodextrin (MbCD), a potent analog of HPbCD, restored
impaired macroautophagy/autophagy flux in Niemann-Pick disease, type C1 (NPC1) cells. This effect was
mediated by a direct activation of AMP-activated protein kinase (AMPK), an upstream kinase in the
autophagy pathway, through MbCD binding to its b-subunits. Knockdown of PRKAB1 or PRKAB2 (encoding
the AMPK b1 or b2 subunit) expression and an AMPK inhibitor abolished MbCD-mediated reduction of
cholesterol storage in NPC1 cells. The results demonstrate that AMPK is the molecular target of MbCD and
its activation enhances autophagy flux, thereby mitigating cholesterol accumulation in NPC1 cells. The
results identify AMPK as an attractive target for drug development to treat NPC.
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AMPK; autophagy flux; drug
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Introduction

Niemann-Pick disease, type C (NPC) is a lysosomal storage
disease caused by mutations in either NPC1 or NPC2. Defi-
ciency in NPC1 or NPC2 protein results in endolysosomal
accumulation of unesterified cholesterol.1,2 Clinical symptoms
of NPC include hepatosplenomegaly, and progressive neurode-
generation and CNS dysfunction, including ataxia, seizures,
motor impairment, and decline of intellectual function.1,2

There is no FDA-approved therapy for NPC, although miglu-
stat, an enzyme inhibitor for the glycosphingolipid pathway,
has been approved for NPC treatment in 45 countries.3

b-cyclodextrins are cyclic oligosaccharides containing a hep-
tameric glucose ring. They are commonly used in drug formula-
tions as pharmaceutical excipients due to the capacity of their
hydrophobic cores to form complexes with hydrophobic drugs,
enhancing their water solubility. 2-hydroxypropyl-b-cyclodextrin
(HPbCD) was found to delay disease onset, reduce accumulation
of cholesterol and other lipids, and extend the life span in
Npc1¡/¡ mice.4,5 HPbCD has been used to treat NPC1-patients,
resulting in partial alleviation of hepatosplenomegaly and central
nervous system dysfunction,6 and is currently being evaluated in
a phase 3 clinical trial. However, the mechanism of action and
molecular target for HPbCD in the reduction of cholesterol
accumulation in NPC1 cells is poorly understood. Due to its
cholesterol complexation capacity, it was initially assumed that

HPbCD acted therapeutically through bulk removal of cellular
cholesterol. More recent studies, however, have shown that
the cyclodextrin enters cells through endocytosis,7,8 and at the
concentrations achieved in vivo, acts by promoting redistribu-
tion of cholesterol within the cell.9 HPbCD may also reduce
cholesterol storage through stimulation of lysosomal exocyto-
sis.7,8 The potency (EC50) of HPbCD in NPC1-patient fibroblast
cells lines is in the range of 1–3 mM,7,10-12 whereas the EC50 of
methyl-b-cyclodextrin (MbCD), another more potent b-cyclo-
dextrin derivative, is »20 mM for reducing cholesterol accumu-
lation in NPC1 cells.8,13

In addition to lysosomal lipid accumulation, defective
autophagy has also been implicated in the pathogenesis of
lysosomal storage diseases including NPC1.14 Autophagy is a
conserved cellular process, essential for cellular homeostasis
and implicated in the turnover of damaged proteins, lipids,
carbohydrates, and organelles by the lysosomal degradation
pathway.15 Autophagy flux is a dynamic process involving the
generation of autophagosomes, and their fusion with late
endosomes to form amphisomes, which in turn fuse with
lysosomes to form autolysosomes.16,17 Accumulation of auto-
phagosomes was reported in various tissues and cells including
Npc1-deficient mouse embryonic fibroblasts (MEFs),12 brain
and liver of the Npc1-deficient mice,18-21 NPC1 knockout
human embryonic stem cell (hESC)-derived neurons,22 NPC1
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fibroblasts,23 NPC1 induced pluripotent stem cells (iPSCs) and
hepatocyte-like cells, neural progenitors, and neurons.10,11

Lysosomes play an important role in autophagy flux and
impaired autophagy is observed in many other lysosomal stor-
age diseases.14 Autophagy malfunction is also implicated in
most neurodegenerative diseases, such as Alzheimer disease,24

Parkinson disease,25 Huntington disease,26 and amyotrophic
lateral sclerosis,27 which share a basic characteristic of aberrant
misfolded proteins or peptide aggregations.28

Here we report the identification of AMPK as a direct target
of MbCD. Our results indicate that MbCD binds the b-subu-
nits of AMPK, activating AMPK and the AMPK-dependent
autophagy pathway. The ability of MbCD to reduce cholesterol
accumulation in NPC1 cells was nearly abolished after knock-
down of the PRKAB1 or PRKAB2 (encoding the AMPK b1 or
b2 subunit) or treatment with an AMPK inhibitor. Conversely,
AMPK activators mimicked the effect of MbCD, reducing cho-
lesterol accumulation in NPC1 cells. Knockdown of PRKAB1
or PRKAB2 also recapitulated the lysosomal accumulation of
cholesterol in wild-type (WT) cells. These findings identify
AMPK as a novel target for drug development to treat NPC
and lysosomal storage diseases and potentially may extend to
treatment of other neurodegenerative disorders.

Results

b-cyclodextrin enters cells through the endocytic pathway

To determine how b-cyclodextrins penetrate the plasma mem-
brane and enters cells, we labeled a per-methylated b-cyclodex-
trin with a BODIPY fluorophore (BODIPY-CD) and studied
the kinetics of its cellular trafficking. We found that it entered
cells rapidly reaching a plateau in 1 h (Fig. 1A). The amount of
BODIPY-CD inside cells correlated with the concentration of
labeled cyclodextrin in the medium (Fig. S1A). The cells
quickly eliminated BODIPY-CD after removing the labeled
cyclodextrin from the medium, with the bulk of the intracellu-
lar fluorescence intensity eliminated after 2 h. The kinetic pro-
files of BODIPY-CD entering and exiting cells were similar in

both WT and NPC1 fibroblasts as well as in the U2OS cells and
neural stem cells (NSCs) differentiated from WT and NPC1
iPSCs (Fig. S1B). BODIPY-CD, similar to MbCD, reduced cho-
lesterol accumulation in NPC1 fibroblasts (Fig. S1C), indicating
that the pharmacological property is retained by fluorphore-
labeled b-cyclodextrin.

Although endocytosis of b-cyclodextrin has been demon-
strated,29 its intracellular trafficking itinerary remains unclear.
To study the distribution of b-cyclodextrin inside cells, we used
cells expressing red fluorescent protein (RFP)-labeled vesicles
and organelles, and examined the colocalization of BODIPY-
CD within these organelles (Fig 1B, Fig. S1D). We observed
strong colocalization of BODIPY-CD with early endosomes,
late endosomes, and lysosomes after 5-, 10- and 30-min incuba-
tion, respectively. BODIPY-CD also colocalized with
MAP1LC3B/LC3B (microtubule associated protein 1 light
chain 3B)-positive autophagic vesicles after 20–30 min incuba-
tion. Cytosolic BODIPY-CD, which was measured by cell
membrane permeabilization, increased after a 20-min incuba-
tion, reaching a significantly higher level after a 30-min incuba-
tion (Fig. S1E). Together, the results demonstrate that
BODIPY-CD enters cells rapidly via the endocytic pathway,
then traffics to LC3B-positive autophagic vesicles and cytosol.
BODIPY-CD also exits cell quickly, presumably through an
exocytic pathway.

MbCD increases autophagosome formation and restores
impaired autophagy flux in NPC1 cells

To further understand the pharmacodynamic activity of
MbCD, we measured its time course effect on autophagy in
WT and NPC1 fibroblasts, and in iPSC-derived NSCs and neu-
rons. We first determined the effect of MbCD on autophago-
some markers LC3B and SQSTM1/p62. LC3-II is the
membrane-attached form of cytosolic LC3-I that has been con-
jugated with phosphatidylethanolamine and is present predom-
inantly on phagophores and autophagosomes.30,31 The
polyubiquitin-binding protein SQSTM1 is degraded by

Figure 1. Kinetics, cellular trafficking and distribution of BODIPY-CD. (A) Kinetics of BODIPY-CD entering and leaving WT and NPC1 fibroblasts. The images were acquired
after incubation with 10 mM BODIPY-CD for the indicated times. (B) Cellular distribution of BODIPY-CD in U2OS cells localized with the RFP-tagged RAB5A (early endo-
some, EE), RAB7A (late endosome, LE), LAMP1 (lysosome, LY) and LC3B protein (LC3B vesicles, LC3/V). The fluorescence colocalization of BODIPY-CD and RFP were mea-
sured at the indicated times after BODIPY-CD was added to the cells. Only colocalized images are displayed and kinetic images are shown in Fig. S1D. Green triangles and
�CD: BODIPY-CD. Scale bar: 10 mm.
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autophagy through direct interaction with LC3-II.32 Basal levels
of LC3B-II and SQSTM1 in the untreated NPC1 cells were
higher than these in WT cells (Fig. 2A). After 24-h treatment
with MbCD, LC3B-II and SQSTM1 increased in NPC1 cells,
whereas the LC3B-II was unchanged and SQSTM1 decreased
in WT cells. LC3B-II and SQSTM1 levels increased in both WT
and NPC1 cells upon treatment with bafilomycin A1, an inhibi-
tor of the vacuolar-type HC-translocating ATPase that blocks
autophagosome-lysosome fusion and decreases autophagy flux,
indicating the impairment of autophagosome-lysosome fusion
is not complete in NPC1 cells. Both proteins further increased
after the treatment with MbCD plus bafilomycin A1, suggesting
that MbCD stimulates autophagosome formation but does not
block autophagy flux. We then performed a 6-d time course
study to examine changes of LC3B-II and SQSTM1 levels after
MbCD treatment. In NPC1 fibroblasts and NSCs, these
markers gradually increased following MbCD treatment, peak-
ing at 2–3 d and declining to levels even lower than basal
expression at d 6. In NPC1 neurons the time course was accel-
erated, with LC3B-II and SQSTM1 levels in NPC1 peaking at d
1 and rapidly declining to sub-basal levels by d 3 (Fig. 2B). By
contrast, in WT cells we did not observe increased LC3B-II and
SQSTM1 levels during the 6-d MbCD treatment in fibroblasts
and NSCs or the 3-d treatment in neurons, though LC3B-I was
increased and SQSTM1 was decreased slightly (Fig. S2A). Simi-
lar results were observed by immunofluorescence staining with
anti-LC3B and SQSTM1 antibodies in fibroblasts and NSCs
(Fig. 2C, Fig. S2B), and in U2OS cells (Fig. S2C). Furthermore,
we performed the time course of filipin staining and found the
decrease of cholesterol accumulation in NPC1 cells correlated
with the decreases in LC3B-II and SQSTM1 levels (Fig. 2D).
The restoration of autophagy flux correlated with the decrease
of cellular cholesterol in NPC1 cells. Together, these results
suggested biphasic effects of MbCD in NPC1 cells. LC3B-II
and SQSTM1 levels initially are increased due to the stimula-
tion of autophagosome formation and accumulation of
increased autophagosomes caused by impaired autophagy flux,
and then decreased, presumably as a result of MbCD-mediated
restoration of autophagy flux and cholesterol reduction.

To further examine the effect of MbCD on autophagy flux,
we employed a mRFP-GFP-LC3B tandem sensor to report the
fusion of autophagosomes with lysosomes to form autolyso-
somes.31,32 This sensor consists of an acid-sensitive GFP
mutant, which fluoresces at acidic pH, and an acid-insensitive
RFP, which fluoresces in both acidic and neutral pH, permit-
ting the progression from the autophagosome with a neutral
pH to autolysosome with an acidic pH to be monitored. Con-
sistent with previous results, we found that both RFP and GFP
fluorescence signals were greater in NPC1 than in WT cells (p
< 0.05, Fig. 2E), indicating accumulation of autophagosomes
in NPC1 cells. After 24-h treatment with MbCD, both the RFP
(p< 0.05) and GFP (p < 0.01) signals increased in NPC1 fibro-
blasts, indicating increased autophagosome formation without
a corresponding increase in autolysosomes (p < 0.05). In WT
cells, on the other hand, only the RFP fluorescence signal was
increased (p < 0.05), indicating increased autolysosome forma-
tion through enhancing of the normal autophagy flux (p <

0.01). By contrast, after 120-h treatment in NPC1 cells, the
GFP signal decreased (p < 0.05) and unmerged RFP puncta

increased dramatically (p < 0.001). These findings were not
accompanied by significant change of RFP signal (p>0.05),
indicating an increase of autolysosomes (p < 0.001). Treatment
of WT and NPC1 fibroblasts either with bafilomycin A1 or
MbCD plus bafilomycin A1 greatly enhanced both GFP and
RFP signals (p < 0.001), consistent with increased autophago-
some formation (p < 0.05). Similar results were also obtained
in U2OS cells (Fig. S2D). Together, these findings indicate that
MbCD rapidly increased autophagosome formation and gradu-
ally restored impaired autophagy flux in NPC1 cells. In WT
cells, MbCD increased autolysosomes and autophagy flux with-
out the biphasic effects.

MbCD activates AMPK and the autophagy pathway

To explore the molecular target of MbCD for stimulation of
autophagy, we profiled the MTOR (mechanistic target of
rapamycin)-dependent autophagy pathway using a phosphory-
lation antibody array.33 Among the altered phosphorylation
events in response to MbCD, was Thr172 phosphorylation of
the a-subunit of AMPK (PRKAA), an upstream component of
the autophagy pathway. In addition, Ser2448 and Ser2481
phosphorylation in MTOR were reduced by MbCD, indicating
inhibition of MTOR function (Fig. S3A). One of the functions
of MTOR is to inhibit ULK1, a regulatory protein in the auto-
phagy pathway. These results led us to hypothesize that MbCD
increases autophagy through activation of AMPK. To deter-
mine the effect of MbCD on AMPK and the AMPK-MTOR
autophagy pathway, we examined the protein phosphorylation
status in this pathway. We found phosphorylation of Thr172
on PRKAA in fibroblasts, NSCs and neurons increased after a
30-min treatment with MbCD, peaking at 1.5 to 2 h, while the
total PRKAA level was unchanged (Fig. 3A, Fig. S3B). We next
employed a time-resolved fluorescence energy transfer
(TR-FRET) assay to quantitatively measure the Thr172 phos-
phorylation level to determine the potency of MbCD. The EC50

for AMPK activation by MbCD was 1–3 mM in NPC1 NSCs
(Fig. 3B), similar to the EC50 for reduction of cholesterol
accumulation.

We further determined the effect of MbCD on downstream
proteins of the AMPK-MTOR autophagy pathway (Fig. 3C).
We found an increase in phosphorylation of Ser792 of RPTOR/
Raptor, a direct target of AMPK and essential for RPTOR-con-
taining MTOR complex 1 (MTORC1) inhibition.34 Phosphory-
lation levels of Ser79 of the AMPK-substrate ACACA/ACC
(Fig. S3C), and Ser1387 of TSC2 also increased. The increase in
RPTOR and TSC2 phosphorylation correlated with the dephos-
phorylation of Ser2448 and Ser2481 in MTOR, which leads to
the inhibition of MTORC1 activity. ULK1 (unc-51 like auto-
phagy activating kinase 1) is the mammalian ortholog of the
yeast protein kinase Atg1 that plays a key role in the initial
stage of autophagy activation. Ser317, Ser555 and Ser777 on
ULK1 are directly phosphorylated by AMPK under conditions
of energy stress that activate the autophagy pathway.35 We
found that MbCD increased phosphorylation levels of Ser317
and Ser555 but not Ser777. Active MTORC1 causes phosphory-
lation of Ser757 at ULK1, disrupting the interaction between
ULK1 and AMPK.35 We further found that MbCD decreased
the phosphorylation of Ser757, which enabled ULK1 activation

AUTOPHAGY 1437



Figure 2. MbCD increases autophagosome formation and restores impaired autophagy flux in NPC1 cells. (A) Autophagy detection in both WT and NPC1 fibroblasts, NSCs
and neurons. Cells were treated with the indicated compounds (100 mM MbCD, 100 nM bafilomycin A1 (baf. A1) or MbCD plus baf. A1) for 24 h, followed by western blot
analysis. For this and all subsequent figures, a representative western blot is shown, and the bar graph represents the mean § SEM of at least 3 replicates, unless other-
wise noted. The intensity of LC3B-II and SQSTM1 were normalized with GAPDH. (B) Time-courses of LC3B and SQSTM1 levels in NPC1 cells after treatment with 100 mM
MbCD. Cells were treated for the indicated times and analyzed by western blot. LC3B-II and SQSTM1 expression were normalized with GAPDH expression. (C) Quantifica-
tion of LC3B and SQSTM1 immunofluorescence in WT and NPC1 fibroblasts and NSCs displayed in Fig. S2A. The normalized relative fluorescence intensities of LC3B and
SQSTM1 dots are shown in bar graphs (mean § SEM for at least 3 fields). (D) Time courses for effect of MbCD on reduction of cholesterol accumulation in NPC1 fibro-
blasts, NSCs and neurons. NPC1 cells were cultured in 96-well plates and treated with 100 mM MbCD for the indicated days, followed by the filipin staining assay. Data
represent mean § SEM of 3 replicates. For this and all subsequent figures, � p < 0.05, �� p < 0.01 and ��� p < 0.001 compared to control, unless otherwise noted. (E)
Images of mRFP-GFP-LC3B tandem sensor in NPC1 fibroblasts. Cells expressing this sensor were treated with the compounds for the indicated times and then stained
with Hoechst 33342. GFP signal shows autophagosomes, whereas RFP signal indicates autophagosomes combined with autolysosomes. The number of GFPC and RFPC

merged punctate structures, as well as the number of non-merged RFPC punctate structures, were quantified for at least 10 cells. Scale bar: 10 mm. RFU, relative fluores-
cent units.

1438 S. DAI ET AL.



Figure 3. MbCD activates AMPK and the autophagy pathway. (A) Time courses of AMPK activation indicated by an increase in the phosphorylation of Thr172 on PRKAA in
NPC1 cells. Indicated cells were treated with 100 mM MbCD for the indicated times, followed by western blot analysis with anti-PRKAA Thr172 antibodies. The ratio of the
intensity of phosphorylated PRKAA at Thr172 and total PRKAA is shown. (B) Concentration-dependent activation of AMPK in NPC1 NSCs measured by a TR-FRET assay. The
up panel shows the TR-FRET assay to detect the phosphorylation levels of Thr172 on PRKAA using an anti-PRKAA antibody for the nonphosphorylated (i.e., total) portion
and an anti-phospho-Thr172 antibody. After cells in 384-well plates were treated with MbCD for 1.5 h, cells were lysed. The TR-FRET assay reagent mixture was added
and TR-FRET signals were detected. (C) Correlation of AMPK activation with the activation of downstream proteins (TSC2, ULK1, RPTOR) and inhibition of MTOR in
WT and NPC1 cells. Cells were treated with 100 mM MbCD for 1.5 h and lysed followed by western blotting. The ratio of the intensity of phosphorylated protein and total
protein is shown.
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by AMPK. In addition, MbCD did not change the expression
levels of STK11/LKB1 and CAMKK2, 2 upstream activators of
AMPK (Fig. S3D). Although the ULK1 activity is suppressed
under nutrition-rich conditions by MTORC1,35 the pharmaco-
logical effect of MbCD on activation of AMPK-ULK1 seems to
alter this activity. Previously, it had been shown that pharmaco-
logical activation of AMPK could prevent DNM1L/DRP1-
mediated mitochondrial fission.36 We found that MbCD,
similar to the AMPK activator AICAR, could enhance DNM1L
phosphorylation (Fig. S3E). Taken together, MbCD directly
activates AMPK, which in turn activates RPTOR and TSC2 fol-
lowed by inhibition of MTORC1. The inhibition of ULK1 by
MTORC1 is then relieved, further stimulating the autophagy
pathway.

MbCD binds to PRKAB1 and PRKAB2 with a higher affinity
to PRKAB1

We next explored AMPK activation by investigating whether
MbCD binds directly to one of its subunits. Glycogen, a glucose
polysaccharide containing a-1,4 and 1,6 glycosidic bonds that
functions as an energy reserve source, binds to PRKAB, inhibit-
ing PRKAA kinase activity.37 Therefore, we hypothesized that
other glucose-containing polymers such as b-cyclodextrins,
might also have the capacity to modulate AMPK activity. We
employed a cellular thermal shift assay (CETSA) to determine
the direct binding of a compound to its target protein.38 This
method uses a specific antibody to measure a compound’s abil-
ity to protect its binding protein in cell lysates from heat-
induced protein denaturation and aggregation. The aggregated
proteins that precipitate out of the solution are not detected by
western blot. Values of apparent aggregation temperature
(Tagg) of PRKAB1 and PRKAB2 in cell lysates were measured
in the absence or presence of MbCD at temperatures ranging
from 37�C to 63�C (Fig. 4A). MbCD increased the resistance of
PRKAB1 and PRKAB2 in fibroblasts to aggregation caused by
heating. The Tagg increased from 53�C to 58.8�C for PRKAB1
and from 52.8�C to 57.6�C for PRKAB2. In NSCs, the Tagg

value increased from 53.2�C to 59.3�C for PRKAB1, the only
subunit expressed in NSCs. The Tagg values were not signifi-
cantly changed by DMSO (a solvent control). These results
support direct binding of MbCD to PRKAB1 and PRKAB2.

Further evidence of MbCD binding to PRKAB1 and
PRKAB2 was obtained by measuring binding affinities using
isothermal dose-response fingerprints (ITDRF), involving incu-
bation of cell lysates with various concentrations of MbCD at
53�C (Tagg). At this temperature, the majority of PRKAB1 and
PRKAB2 aggregate and precipitate in the absence of MbCD.
We found that MbCD reduced aggregation of PRKAB1 and
PRKAB2 in a concentration-dependent manner (Fig. 4B). The
binding affinities (EC50) of MbCD to PRKAB1 and PRKAB2 in
NPC1 fibroblasts were 1.9 mM and 8.3 mM, respectively, and
1.1 mM for the PRKAB1 subunit in NSCs. By contrast, MbCD
did not stabilize PRKAA (Fig. S4A). Taken together, these find-
ings provide support for direct binding of MbCD to PRKAB1
and PRKAB2, with a 4-fold higher binding affinity for PRKAB1
as compared to PRKAB2.

MbCD was more effective in reducing cholesterol storage in
NPC1 NSCs and neurons (EC50 D 3.0 mM in a filipin staining

assay and 4.1 mM in a LysoTracker Red staining assay for
NSCs, and 7.0 mM and 5.3 mM for neurons) than in NPC1
fibroblasts (EC50 D 22.3 mM in a filipin staining assay and 38.6
mM in a LysoTracker Red staining assay) (Fig. 4C).13 In addi-
tion, NSCs and neurons mainly express the PRKAA2/AMPK
a2-subunit, whereas fibroblasts predominantly express the
PRKAA1/AMPK a1-subunit (Fig. S4B and C). There were no
significant differences in the subunit expression patterns
between WT and NPC1 cells. These results suggest that differ-
ences in isoform expression patterns of AMPK subunits and
the different affinities of MbCD toward PRKAB1 and PRKAB2
may account for the observed differences in EC50 values
for MbCD-mediated cholesterol reduction across these 3 cell
types.

To further determine the structural basis of the differences
for efficacy of MbCD in different cell types, we modeled the
binding interactions of MbCD with PRKAB1 and PRKAB2.
The structural binding models were derived from the crystal
structures of b-cyclodextrin bound with the human PRKAB2
and with a truncated rat PRKAB1,37,39,40 and employed energy
minimization and molecular dynamics simulations to refine
the interactions and conformational changes of the protein
upon MbCD binding. Initial analysis of the binding mode indi-
cated that MbCD binds to PRKAB1 in a similar manner to that
observed with PRKAB2 (Fig. 4D-F). Key interactions including
hydrogen bonding with residues Lys126 and Asn150, and aro-
matic stacking interactions with 2 Trp residues in PRKAB1 and
PRKAB2, are generally conserved. However, structural differ-
ences between the 2 subunits with respect to interactions with
MbCD were also observed, in particular the induced conforma-
tional changes of residue Trp100/Trp99 within PRKAB1 and
PRKAB2 and a flexible binding loop, which is characterized by
a hydrophobic interaction with L146. Moreover, the analysis
indicates that the degree and localization of CD-substituents
might promote or impair conformation shifts and therefore
activation of each subunit, raising the possibility of developing
isoform-specific activators.

Pharmacological effect of MbCD is blocked by an AMPK
inhibitor and mimicked by AMPK activators

To examine the effect of the MbCD-AMPK interaction on cho-
lesterol reduction and enhancement of autophagy flux, we used
both an AMPK inhibitor and AMPK activators. Dorsomor-
phin, a known AMPK inhibitor, significantly increased lyso-
somal cholesterol accumulation in WT cells (Fig. 5A), inducing
a cellular phenotype of cholesterol storage similar to NPC1
cells. In the NPC1 cells, dorsomorphin further exacerbated
cholesterol accumulation and also blunted MbCD’s effect
on cholesterol reduction (Fig. 5B). In addition, dorsomorphin
attenuated the ability of MbCD to increase LC3-II and
SQSTM1 levels in NPC1 cells (Fig. 5C). By contrast, AMPK
activators RSVA405 and A769662 reduced cholesterol accumu-
lation (p < 0.01, Fig. 5D) and activated autophagy by increas-
ing LC3B-II and SQSTM1 levels in NPC1 fibroblasts (Fig. 5E),
mimicking the effect of MbCD. Together, the results indicate
that MbCD acts through the AMPK-dependent autophagy
pathway to regulate disposal of cholesterol in NPC1 cells.
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PRKAB1 or PRKAB2 is required for MbCD’s effect on
cholesterol reduction, autophagy activation and increase
of autophagy flux

To further explore the requirement of PRKAB1 or PRKAB2 for
the MbCD’s mechanism of action, we performed experiments
using cells in which PRKAB1 or PRKAB2 expression was
silenced and then re-expressed (Fig. 6A, Fig. S5A-C). Knock-
down of PRKAB1 or PRKAB2 and pharmacological inhibition
of AMPK by dorsomorphin did not have an effect on the cellu-
lar dynamics of BODIPY-CD (Fig. S5A). Knockdown of

PRKAB1 or PRKAB2 either alone or together further increased
the cholesterol accumulation in NPC1 fibroblasts (Fig. 6A).
Reduction in PRKAB1 or PRKAB2 expression, again either
alone or in combination, markedly attenuated MbCD’s effect
on phosphorylation of Thr172 on PRKAA, as well as on reduc-
tion of cholesterol accumulation (Fig. 6A, Fig. S5B). We then
re-expressed PRKAB1 or PRKAB2 in the PRKAB1- or
PRKAB2-silenced cells using activation vectors. The re-expres-
sion of PRKAB1 or PRKAB2 or both subunits in the
double-knockdown cells restored the effect of MbCD on phos-
phorylation of Thr172 of PRKAA and cholesterol reduction

Figure 4. MbCD binds to PRKAB1 and PRKAB2 with a higher affinity for PRKAB1. (A) Temperature melting curves of PRKAB1 and PRKAB2 in the presence or absence of
300 mM MbCD. The relative chemiluminescent intensity of each sample at different temperatures was used to generate temperature-dependent melting curves and the
apparent aggregation temperature (Tagg) was calculated by nonlinear regression. (B) Apparent binding affinities of MbCD with PRKAB1 and PRKAB2 measured by CETSA.
Cell lysates were treated with MbCD and heated to 53�C for 3 min. The supernatants obtained after centrifugation were analyzed by western blotting using anti-PRKAB1
or anti-PRKAB2 antibody. A representative blot was shown and data represent mean § SEM of at least 3 replicates. (C) MbCD reduced NPC1 phenotypes in fibroblasts,
NSCs and neurons. NPC1 cells were cultured in 96-well plates and treated with various concentrations of MbCD. After a 4-d (fibroblasts and NSCs) or 3-d (neurons) incuba-
tion filipin or LysoTracker Red staining was performed. Data represent mean § SEM of 3 replicates. (D) A structural model of AMPK (PRKAA2B1G1, PDB code 4CFF) bound
with MbCD (yellow), activator A769662 (brown), and inhibitor dorsomorphin (gray). The 3 subunits of AMPK are shown in green (PRKA2), magenta (PRKAB1), and cyan
(PRKAG1). (E) Binding model of MbCD with PRKAB1. (F) Binding model of MbCD with PRKAB2. MbCD is shown in sticks in yellow (carbon atom). AMPK is shown in ribbons
and key interacting residues are shown in sticks in green (PRKAB1) or cyan (PRKAB2). Residue L146 within a flexible loop, which is positioned in the MbCD hole, is shown
in magenta.
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(Fig. 6A, Fig. S5B). We further found that the increases in LC3-
II and SQSTM1 levels by MbCD treatment were abolished in
PRKAB1 and PRKAB2 double-knockdown cells (Fig. S5C).
Similarly, overexpression of PRKAB1 or PRKAB2 restored
MbCD’s effect on LC3 and SQSTM1 proteins (Fig. S5C). In
order to determine whether the effect of MbCD on reduction
of cholesterol in NPC1 cells was autophagy dependent, we per-
formed ATG12 knockdown in NPC1 fibroblasts. ATG12 conju-
gates with ATG5 to form an ATG12–ATG5 complex that is
essential for autophagy. Silencing of either ATG12 or ATG5
expression also impairs autophagy flux, similar to that induced
by lysosomal cholesterol accumulation,41 however as a result of
defective autophagosome formation.42 We found that ATG12
knockdown attenuated the effect of MbCD on reduction of
accumulated cholesterol in NPC1 fibroblasts (Fig. 6B) as well
as its effects on LC3B-II and SQSTM1 levels (Fig. 6C). How-
ever, these effects were not completely abolished, likely due to
the incomplete knockdown of the ATG12 protein. Together,
our results provide strong evidence that the pharmacological
effect of MbCD on reduction of cholesterol accumulation
requires intact AMPK activity and is dependent on autophagy
activation.

To further investigate the effect of MbCD on the late stage
of autophagy flux (autophagosome-lysosome fusion), we exam-
ined the formation of soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE) complexes, a critical step
in autophagosome-lysosome fusion, which is impaired in lyso-
somal storage disorders such as NPC1, multiple sulphatase
deficiency and mucopolysaccharidosis type IIIA.12,43,44 STX17
(syntaxin 17) resides in the outer membrane of autophagoso-
mal vesicles and interacts with the endosomal-lysosomal
VAMP8 and SNAP29 proteins, all of which are part of a
SNARE complex during fusion.43 We performed co-immuno-
precipitation of STX17, VAMP8 and SNAP29 to determine
whether MbCD enhances the process of autophagosome-lyso-
some fusion (Fig. 6D and E, Fig. S6A). In WT fibroblasts, the
expression levels of these 3 SNARE proteins were independent
of PRKAB1 and PRKAB2 expression. STX17, VAMP8 and
SNAP29 co-immunoprecipitated in the WT fibroblasts, and
the interactions of these SNARE proteins were increased by
MbCD, indicating enhanced autophagosome-lysosome fusion.
MbCD-stimulated interactions of STX17, VAMP8 and
SNAP29 were decreased after knockdown of either PRKAB1 or
PRKAB2, or almost completely abrogated after knockdown of

Figure 5. Pharmacological effect of MbCD is blocked by an inhibitor and mimicked by activators of AMPK. (A, B) Filipin staining for unesterified cholesterol accumulation
in WT and NPC1 fibroblasts treated with the AMPK inhibitor dorsomorphin (DM) in the presence and absence of 100 mM MbCD. (C) Western blotting for LC3B and
SQSTM1 levels in NPC1 fibroblasts treated with the indicated compounds (2 mM DM, 100 mM MbCD, or 100 nM baf. A1) for 24 h. LC3B-II and SQSTM1 expression were
normalized to GAPDH expression. (D) Filipin staining after the cells were treated with the indicated compounds (1.25 mM RSVA 405, 200 mM A769662 or 100 nM baf. A1)
for 4 d. (E) Western blotting for LC3B and SQSTM1 levels in NPC1 fibroblasts treated with AMPK activators (1.25 mM RSVA 405 or 200 mM A769662) for 24 h. LC3-II and
SQSTM1 expression were normalized to GAPDH expression. Scale bar: 10 mm.
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both PRKAB1 and PRKAB2. As expected, re-expression of
PRKAB1 or PRKAB2 restored the MbCD-stimulated interac-
tions of these SNARE proteins. In NPC1 fibroblasts, the inter-
actions of these SNARE proteins were increased by MbCD,
although the increases were not as significant as in WT cells

(Fig. 6E). We also used cells expressing a RFP-LC3B marker to
examine colocalization of LC3B with STX17, VAMP8 and
SNAP29, another indication of increased autophagosome-lyso-
some fusion (Fig. 6F and G, Fig. S6B). MbCD-dependent coloc-
alization of RFP-LC3B with STX17, VAMP8 and SNAP29 were

Figure 6. (For figure legend, see page 1444.)
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partially or completely attenuated in the WT fibroblasts with
reduced expression of PRKAB1 or PRKAB2. Colocalization of
the SNARE proteins was restored by re-expression of either
PRKAB1 or PRKAB2 (Fig. 6F, Fig. S6B). In addition, the coloc-
alization of RFP-LC3B with VAMP8 increased gradually in
NPC1 cells during 3-d treatment with MbCD, whereas in WT
cells a significant increase in colocalization was observed after
24-h treatment (Fig. 6G). The results indicated that the effect of
MbCD on SNARE complex formation relies on autophagy
induction through its interaction with PRKAB1 and PRKAB2.
The delayed interaction in NPC1 cells may be due to the lyso-
somal accumulation of cholesterol.

Discussion

Our data provide important new insight into the mechanism of
action by which MbCD alleviates cholesterol accumulation in
NPC1 cells. We show that MbCD enters cells by endocytosis
and binds to PRKAB1 and PRKAB2 leading to activation of
AMPK and the AMPK-dependent autophagy pathway. In the
NPC1 cells, the observed impairment in autophagy flux corre-
lates with a reduced autophagosome-lysosome fusion, presum-
ably due to lysosomal dysfunction as consequence of
cholesterol accumulation.14,44 MbCD activation of AMPK pro-
motes autophagy flux and gradually mobilizes accumulated
cholesterol in lysosomes of NPC1 cells, restoring cholesterol
homeostasis (Fig. 7).

There are conflicting reports as to whether autophagy is
increased or blocked in NPC1-patients cells,19,21 and Npc1
mutant animal models.18 It remains unclear whether the
observed elevations in LC3-II and SQSTM1 protein levels and
increase in the number of autophagosomes represent a primary
increase in autophagic activity or a secondary reduction in
autophagy flux caused by impairment of autophagosome-lyso-
some fusion. Evidence for autophagy induction was based on
an increase in LC3-II level in the cerebellar and liver extracts of
NPC1-deficient mice,18,19,21 and in NPC1-patient fibro-
blasts.19,21 Conversely, increases in LC3-II or SQSTM1 protein
levels in NPC1-patient fibroblasts, iPSC-derived hepatocyte
like cells and neural progenitor cells,10,11,23 cerebellar or liver
extracts of an NPC1-deficient mice model,10,12,20,41 and NPC1-
deficient MEFs and CHO cells12 have been proposed to be sec-
ondary to impaired autophagy flux. Impaired autophagy flux
may indicate reduced cellular capacity for lysosomal proteoly-
sis, as suggested by an increase in autolysosomes,15 and

impaired SNARE assembly, while the cellular lysosomal proteo-
lytic function might remain unaffected.12,44,45 Others have pro-
posed that NPC1 is characterized by both increased autophagy
induction and impaired autophagy flux.14,22 It seems likely that
differences in methods and experimental designs may account
for the variable results. Our findings are consistent with the
underlying impairment in autophagosome-lysosome fusion
and autophagy flux in NPC1 cells. We also examined the
impairment of the autophagy pathway in the patient cells of 4
other lysosomal storage diseases. We did not find significant
impairment in the autophagy pathway nor cholesterol accumu-
lation in patient cells derived from Batten, Farber, Tay-Sachs
and Wolman diseases (Fig. S7). The negative results on
impairment of the autophagy pathway may be explained by the
examination of limited patient cell lines, and/or the fact that no
cholesterol accumulation was found in these patients’ cells.

The effects of cyclodextrin on autophagy are also controver-
sial. At high concentrations, HPbCD has been reported to
inhibit autophagy,11,12,45 whereas at lower concentrations auto-
phagy was unaffected.12 HPbCD increased autophagosome for-
mation through an activation of TFEB (transcription factor
EB) and an increase of LC3 expression,46 along with ameliora-
tion of impaired autophagy flux.10,20,23 After MbCD treatment
we found dynamic changes in LC3-II and/or SQSTM1 protein
levels in NPC1 cells, and increased LC3-I and decreased
SQSTM1 levels in WT cells. The increased LC3-II and
SQSTM1 levels in NPC1 cells in the early stage of MbCD treat-
ment appears to be caused by the imbalance between enhanced
autophagy induction and impaired autophagy flux, which was
not observed in WT cells. With longer MbCD treatment (>
96 h), autophagy flux was restored, likely by promoting SNARE
protein interactions. However, the SNARE protein interactions
were enhanced upon 24-h treatment with MbCD, both in
NPC1 and WT cells (before reduction of accumulated choles-
terol in NPC1 cells). In NPC1 cells, MbCD enhanced SNARE
protein interactions were weaker than these in WT cells, pre-
sumably due to the lysosomal accumulation of cholesterol.44

The restoration of SNARE protein interactions by MbCD fur-
ther led to reductions of accumulated cholesterol. Previous
studies have shown that the impairment of autophagy in NPC1
can be restored by stimulating autophagy with rapamycin or
CBZ,11,12 and the cholesterol accumulation phenotype also can
be alleviated by rapamycin treatment.47 The induction of auto-
phagy can promote cholesterol efflux through a lysosomal
pathway by enhanced autophagosome and lysosome fusion.48

Figure 6. (see previous page) PRKAB1 or PRKAB2 is required for the effect of MbCD on cholesterol reduction, autophagy induction, and increase of autophagy flux. (A, B)
Filipin staining of NPC1 fibroblasts treated with MbCD. (A) PRKAB1 or PRKAB2 expression was silenced by shRNA and the subunits re-expressed with transient transfection
of either PRKAB1 or PRKAB2 activation vectors. (B) ATG12 expression was silenced by shRNA. All of the cells were treated with 100 mM MbCD or DMSO control for 4 d fol-
lowed by the filipin staining assay. (C) NPC1 fibroblasts transfected with ATG12 shRNA or control shRNA were treated with 100 mM MbCD or DMSO control for 24 h, fol-
lowed by western blot analysis with the indicated antibodies. LC3B-II, SQSTM1 and ATG12 expression were normalized to GAPDH expression. (D-G) MbCD effects on
SNARE proteins interactions. (D) Immunoprecipitation and western blot analysis of 3 SNARE proteins (VAMP8, STX17 and SNAP29). WT fibroblasts with the PRKAB/AMPK
b-subunit silenced or with AMPK b-subunit re-expression was treated with MbCD or DMSO for 24 h. Cells were lysed and directly immunoprecipitated with anti-VAMP8
antibody followed by western blot analysis with the indicated antibodies. (E) NPC1 and WT fibroblasts were treated with MbCD for the indicated times, followed by
immunoprecipitation with anti-SNAP29 and western blot analysis with the indicated antibodies. (F) Immunofluorescence staining and colocalization of LC3 with VAMP8.
Indicated WT fibroblasts, transiently transfected with TagRFP-LC3 lentiviral particles, were treated with 100 mM MbCD or DMSO for 24 h and stained with anti-VAMP8
antibody. The punctate structures of VAMP8 were colocalized with RFP-LC3 (yellow color in the merged images). Data represent mean § SEM of 10 images. (G) NPC1
and WT fibroblasts, transiently transfected with TagRFP-LC3 lentiviral particles were treated with MbCD for the indicated times, followed by staining with anti-VAMP8
antibody. The colocalization of VAMP8 and RFP-LC3 puncta was analyzed as above. Abbreviations: PRKAB1 or PRKAB2 act., PRKAB1 or PRKAB2 activation vectors; Mock
vec., mock vector; LY, lysosome; AP, autophagosome. Scale bar: 10 mm (yellow) and 1 mm (white).
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In addition, the basal autophagy level may affect the response
time of MbCD-induced restoration of impaired autophagy and
cholesterol reduction. Since neurons may have a higher basal
autophagy level and more efficient autophagic turnover, they
showed a faster response to MbCD treatment that is consistent
with a previous report in which cholesterol is removed from
NPC1 neurons after 24 h of HPbCD treatment.49 Cyclodextrins
may also have multiple effects on cholesterol homeostasis
including the activation of AMPK-dependent autophagy, an
increase in lysosomal exocytosis,7 and by removing cholesterol
from the plasma membrane.50

The activation of AMPK could promote ABCA1-mediated
cholesterol efflux to APOA1 (apolipoprotein A1), which is a
major housekeeping mechanism for cellular cholesterol homeo-
stasis.51 Additionally, AMPK activation suppresses the activity
of cholesterol synthesis post-translationally through phosphor-
ylation of HMGCR (3-hydroxy-3-methylglutaryl-CoA reduc-
tase), the rate-limiting enzyme in cholesterol biosynthesis, and
inhibition of sterol-regulatory element-binding proteins
(SREBPs), transcription factors that are master regulators of
cholesterol biosynthesis and lipoprotein cholesterol uptake.52,53

AMPK activation might also be an attractive drug development
target for treatment of NPC. Computer modeling can be a use-
ful tool to design a new generation of AMPK activators that
have a more selective effect on restoration of impaired auto-
phagy and reduction of accumulated cholesterol in NPC cells.
Such AMPK activators will also need to have improved CNS
penetration in order to treat neurological symptoms in NPC.

Impaired autophagy has been implicated in other neuro-
degenerative diseases. Importantly, aggregated proteins in

post-mitotic neurons cannot be diluted by cell division, and
therefore autophagy plays a fundamental role in mature
neural cells maintaining protein quality-control processes
and executing the cleavage of life-threatening protein aggre-
gates.54 Since abnormalities in autophagy flux have been
implicated in the pathogenesis of neurodegenerative
diseases, autophagy has been considered as an emerging
therapeutic target.28 Activation of autophagy ameliorates
beta-amyloid peptides and MAPT/tau pathology in an Alz-
heimer disease mouse model,55 enhances autophagic clear-
ance of SNCA/a-synuclein oligomers in dopaminergic
neurons,56 alleviates behavioral motor abnormalities and
neuropathology in Huntington disease models,57 and pro-
motes clearance of mutant SOD1 (superoxide dismutase 1)
in models of amyotrophic lateral sclerosis.58 Specifically,
stimulation of autophagy through AMPK activation is pro-
tective and delays disease progression in a variety of neuro-
degenerative disorders.28,59-61

HPbCD has advanced to late-stage clinical trials for
treatment of NPC1 disease and has the potential to become
the first FDA-approved drug for this disorder. Nonetheless,
limitations of the drug are well recognized, including oto-
toxicity,62 and a requirement for direct CNS delivery due to
inability of the drug to efficiently cross the blood-brain bar-
rier.9,63 Our findings provide a plausible mechanism of
action of b-cyclodextrins for restoration of cholesterol
homeostasis in NPC1 cells. Future drug discovery efforts
focused on the development of CNS-penetrant small mole-
cule activators of AMPK may offer effective and more trac-
table therapies for treatment of NPC disease.

Figure 7. Schematic diagram of the mechanism of action of MbCD in NPC1 cells. After entering NPC1 cells by endocytosis, MbCD activates AMPK by binding to PRKAB/
b-subunit, enabling PRKAA/a-subunit to be phosphorylated and activated. The activated AMPK sequentially phosphorylates downstream proteins, inducing autophagy.
As a consequence of autophagy induction, autophagosome formation increases and autophagy flux is enhanced, as evidenced by an increase in SNARE complexes and
consequential autophagosome-lysosome fusion. Ultimately, the impaired autophagy flux within NPC1 cells is restored by MbCD treatment.
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Materials and methods

Compounds and antibodies

Three different methyl-b-cyclodextrins (MbCD) were pur-
chased from MP Biomedicals (157320; lot number 9355K and
M1322) and Sigma-Aldrich (C4555; lot number SLBH6893V).
However, only the MbCD from MP Biomedicals (lot number
9355K) exhibited potent activity on reduction of lysosomal
cholesterol accumulation and AMPK activation. BODIPY-
labeled cyclodextrin (BODIPY-CD) was synthesized in house,
and was used to monitor the distribution and trafficking in cells
with excitation of 488 nm and emission of 525 nm. RSVA 405,
A769662, dorsomorphin and bafilomycin A1 were purchased
from Tocris Bioscience (5138, 3336, 3093 and 1334). AICAR
and palmitate (PA) were purchased from Sigma-Aldrich
(A9978 and P9767). All the antibodies are summarized in
Table 1.

Cell culture

Wild-type fibroblasts (Coriell Cell Repository, GM05659) and
NPC1-patient fibroblasts (Coriell Cell Repository, GM03123; a
heterozygote, 1 allele carries a missense mutation C > T at
nucleotide 709 (709C > T) in exon 6 of the NPC1 gene, result-
ing in a substitution of a serine for a proline at codon 237; the
second allele also carries a missense mutation T > C at nucleo-
tide 3182 (3182T > C) in exon 21 which results in the substitu-
tion of a threonine for an isoleucine at codon 1061 in a

transmembrane domain) were cultured in Dulbecco’s modified
Eagle’s medium (Thermo Fisher Scientific, 12430047) with 10%
fetal bovine serum (GE, SH30071) and 100 U/ml penicillin-
streptomycin (Thermo Fisher Scientific, 15140-122,) in a 37�C,
5% CO2, and 75% humidity incubator. The cells were reprog-
rammed and the induced pluripotent stem cells both from WT
and NPC1-patient cells were generated, followed by neural
induction to neural stem cells (NSCs) and differentiation into
neurons, as described previously.13 Both the WT and NPC1
NSCs were cultured in StemPro NSC SFM (Life Technologies,
A1050901) containing knockout Dulbecco’s modified Eagle’s
medium-F12, StemPro neural supplement, 20 ng/ml bFGF,
20 ng/ml EGF and 1X GlutaMAX on Matrigel (Corning,
354263)-coated flasks. The medium for neuron differentiation
was composed of Neurobasal medium (Life Technologies,
21103-049), B27 (Life Technologies, 17504-044), GlutaMAX
(Life Technologies, 35050–061), 10 ng/ml BDNF (Life Technol-
ogies, PHC7074), 10 ng/ml GDNF (Life Technologies,
PHC7074), 1 mM cAMP (Sigma, D0627) and 200 ng/ml of L-
ascorbic acid (Sigma, A4403). Briefly, NSCs were seeded in the
poly-L-ornithine and LAM/laminin dual pre-coated 96-well or
6-well plates (Corning, 354658 or 3546587) as indicated at
3000 cells/well (cell density of 5 £ 104 cells/cm2). Cells were
cultured for 4 wk in the neural differentiation medium and half
of the medium was replaced twice a wk during continuous cul-
turing. U2OS cells (ATCC, HTB-96) were cultured in McCoy’s
5a Medium (Life Technologies, 16600-108) with 10% fetal
bovine serum and 100 U/ml penicillin-streptomycin.

Table 1. Summary of the antibodies used in experiments.

Name Isotype Vendor Catalog# Dilution factor

Primary LC3B Rabbit Cell Signaling Technology 3868s Western: 1:1000, IF: 1:200
SQSTM1 Mouse Santa Cruz Biotechnology sc-28359 Western: 1:200, IF: 1:50
GAPDH Rabbit Cell Signaling Technology 5174s Western: 1:10000
ACTB/b-actin Rabbit Cell Signaling Technology 4970s Western: 1:10000
p-PRKAA Thr172 Rabbit Cell Signaling Technology 2535s Western: 1:1000
PRKAA Rabbit Cell Signaling Technology 5832s Western: 1:1000
PRKAB1/2 Rabbit Cell Signaling Technology 4150s Western: 1:1000
PRKAA1 Rabbit Novus NBP2-22127 Western: 1:1000
PRKAA2 Rabbit Novus MAB2850 Western: 1:1000
PRKAAG1/2/3 Mouse Santa Cruz Biotechnology sc-390579 Western: 1:200
p-TSC2 Ser1387 Rabbit Cell Signaling Technology 5584s Western: 1:1000
TSC2 Rabbit Cell Sgnaling Technology 4308s Western: 1:1000
p-RPTOR Ser792 Rabbit Cell Signaling Technology 2083s Western: 1:1000
RPTOR Rabbit Cell Signaling Technology 2280s Western: 1:1000
p-MTOR Ser2448 Rabbit Cell Signaling Technology 5536s Western: 1:1000
p-MTOR Ser2481 Rabbit Cell Signaling Technology 2974s Western: 1:1000
MTOR Rabbit Cell Signaling Technology 2983s Western: 1:1000
p-ULK1 Ser317 Rabbit Cell Signaling Technology 12753s Western: 1:1000
p-ULK1 Ser555 Rabbit Cell Signaling Technology 5869s Western: 1:1000
p-ULK1 Ser777 Rabbit Millipore ABC213 Western: 1:1000
p-ULK1 Ser757 Rabbit Cell Signaling Technology 6888s Western: 1:1000
ULK1 Rabbit Cell Signaling Technology 8054s Western: 1:1000
p-ACACA Ser79 Rabbit Cell Signaling Technology 11818s Western: 1:1000
ACACA Rabbit Cell Signaling Technology 3676s Western: 1:1000
VAMP8 Rabbit Abcam ab76021 Western: 1:1000, IP: 100 mg/1 mg protein
STX17 Rabbit GeneTex GTX130212 Western: 1:1000, IP: 100 mg /1 mg protein
SNAP29 Rabbit Abcam ab138500 Western: 1:1000, IP: 100 mg /1 mg protein
STK11 Rabbit Cell Signaling Technology 3047s Western: 1:1000
CAMKK2 Mouse Santa Cruz Biotechnology sc-17827 Western: 1:200
p-DNM1L Ser637 Rabbit Cell Signaling Technology 6319s Western: 1:1000
DNM1L Rabbit Cell Signaling Technology 8570s Western: 1:1000

Secondary Anti-rabbit IgG, Alexa Fluor 488 Donkey Thermal Fisher A21206 1:200
Anti-mouse IgG, Alexa Fluor 594 Rabbit Thermal Fisher A11062 1:200
Anti-rabbit IgG, HRP Rabbit Cell Signaling Technology 7074s 1:5000
Anti-mouse IgG, HRP Mouse Cell Signaling Technology 7076s 1:5000
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Cell transfection and generation of stable cell lines

RAB5A-RFP, RAB7A-RFP and LAMP1-RFP Bacmam 2.0
baculovirus (Thermo Fisher Scientific, C10587, C10589 and
C10504) were used to transiently transfect U2OS cells and
respectively label early endosomes, late endosomes and lyso-
somes with RFP in live cells per the manufacturer’s instruc-
tions. TagRFP-LC3B lentiviral particles (EMD Millipore,
17–10143) were used to transfect fibroblasts at the indicated
multiplicity of infection and label the autophagic vesicles
including autophagosomes and autolysosomes. Tandem
mRFP-GFP-LC3B BacMam 2.0 baculovirus (Thermo Fisher
Scientific, P36239) was used for transient transduction of fibro-
blasts and for monitoring autophagosome formation and
fusion with lysosomes into autolysosomes as previously
described.32

PRKAB1 and PRKAB2 shRNA Lentiviral Particles Gene
Silencer system (Santa Cruz Biotechnology, sc-38925 and sc-
38927) were used to generate stable cell lines with silencing of
PRKAB1 or/and PRKAB2 expression per the manufacturer’s
instructions. Briefly, WT and NPC1 fibroblasts were seeded in
6-well plates (100,000 cells/well) with complete growth
medium, and incubated overnight. The cells were »50% con-
fluent on the day of infection. Medium was replaced with the
medium containing polybrene (Santa Cruz Biotechnology,
sc-134220) at a final concentration of 5 mg/ml. The lentiviral
particles were handled per the manufacturer’s instruction and
added to the plates to achieve a multiplicity of infection of
2–10. The cells were incubated with lentiviral particles for 48 h,
followed by a 1:3 split and cultured for another 48 h without
lentiviral particles and polybrene. Stable clones expressing
PRKAB1 and PRKAB2 shRNA were selected by growth in 8
mg/ml puromycin dihydrochloride (Santa Cruz Biotechnology,
sc-108071). The resistant colonies were selected and expanded,
followed by western blotting analysis of stable shRNA expres-
sion. PRKAB1 and PRKAB2 CRISPR Activation Plasmids
(Santa Cruz Biotechnology, sc-402952-ACT and sc-403537-
ACT) were used to transiently overcome PRKAB1 or PRKAB2
shRNA-induced gene silencing. Briefly, the selected clones with
stable expression of PRKAB1 or/and PRKAB2 shRNA were
seeded in 6-well plates (100,000 cells/well) in culture medium
without antibiotics, and the cells were approximately 40–80%
confluent after overnight incubation. Medium was replaced
with antibiotic-free medium by adding UltraCruz transfection
reagent (Santa Cruz Biotechnology, sc-395739) and plasmid
DNA solution at optimized concentrations. The cells were
incubated for 48 h, followed by medium change and cultured
for another 24 h. Cells were examined by western blotting to
evaluate PRKAB1 or PRKAB2 gene expression.

Live-cell imaging for study of kinetics and distribution of
cyclodextrin in cells

The kinetics of BODIPY-CD was measured in WT and NPC1
fibroblasts, NSCs, and U2OS cells. After live staining of the
nucleus (Life Technologies, R37605), the cells were cultured in
black, clear-bottom, 96-well plates (Greiner Bio-One, 655097),
and incubated with 10 mM BODIPY-CD for the indicated
times. Cells with different BODIPY-CD incubation time were

immediately imaged after 2 rinses with phosphate-buffered
saline (PBS; Life Technologies, 14190-169). Cells after 120 min
incubation with 10 mM BODIPY-CD incubation and cell rinses
were imaged at 1 Hz for 120 min at 37�C to evaluate the kinet-
ics of this labeled compound leaving cells. All the images were
acquired on an INCell2200 automated fluorescence microscope
(GE Healthcare Life Sciences) with a 40 £ 0.75 High NA objec-
tive lens and FITC (BODIPY-CD) and DAPI (nuclei) filter sets.
The intracellular fluorescence intensity of the FITC channel
was analyzed using INCell Analyzer software.

U2OS cells transiently transfected with RAB5A-RFP,
RAB7A-RFP and LAMP1-RFP BacMam 2.0 baculovirus.
TagRFP-LC3B lentiviral particles were used to determine the
cellular distribution of BODIPY-CD. The cells were incubated
with 10 mM BODIPY-CD for the indicated times (5-60 min).
After 2 rinses with PBS, cells were imaged on an INCell2200
imaging system with a 40 £ 0.75 High NA objective lens and
FITC (BODIPY-CD), CY3 (RFP-labeled organelles) and DAPI
(nuclei) filter sets. The colocalization was analyzed by the
merging of images of FITC and CY3 channels using the INCell
Analyzer software.

Filipin staining

Filipin dye (Sigma-Aldrich, F9765) detects the unesterified cho-
lesterol in cells. Cells were cultured at densities of 500 cells/well
for fibroblasts and 1000 cells/well for NSCs in black, clear-bot-
tom 96-well plates and treated with compounds for the indi-
cated days. After rinsing twice with PBS, cells were fixed with
100 ml/well of 3.2% paraformaldehyde for 15 min followed by a
cell rinse. The cells were stained with 100 ml/well of 50 ng/ml
filipin (freshly dissolved in DMSO at 10 mg/ml and then
diluted in PBS) at room temperature for 1 h. After rinsing with
PBS, cell nuclei were stained with 16 mM red nuclear dye (AAT
Bioquest, 17552) for 30 min at room temperature followed by a
cell wash. The cells were then imaged using the INCell2200
imaging system with a 20X or 40X objective lens using DAPI
and Cy5 filter sets. Image analysis was conducted using the
INCell Analyzer software. With a multitarget analysis protocol,
nuclei were segmented using the top-hat segmentation method
with a minimum area set at 125 mm and a sensitivity set at 60.
Filipin staining was identified as “organelles” by the analysis
software and was segmented using the multi scale top-hat algo-
rithm. Settings for filipin detection involved identification of fil-
ipin aggregates ranging in size from 10 to 125 mm (30 to 300
pixels) and a sensitivity setting of 50. Total filipin intensity was
calculated from cells exceeding the user-defined threshold for
whole-cell intensity.

LysoTracker Red staining

LysoTracker Red dye stains cellular acidic compartments and
allows visualization of enlarged lysosomes at the proper dye
concentration in NPC1-patient cells. Cell seeding and treat-
ment were exactly same as for the filipin staining assay. After
washing with PBS, cells were incubated with 100 ml/well 50 nM
LysoTracker Red dye (Life Technologies, L-7528) at 37�C for
1 h. Cells were then fixed in 100 ml/well 3.2% paraformalde-
hyde solution containing 1 mg/ml Hoechst 33342 (Life
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Technologies, H1399) in PBS and incubated at room tempera-
ture for 30 min. After washing twice with PBS, cells were
imaged in an INCell Analyzer 2200 using DAPI and DsRed fil-
ter sets. Images were analyzed with the multi-target analysis
protocol as with the filipin staining assay.

Immunocytochemistry

Cells were grown and stained in black, clear-bottom 96-well
plates. All the liquid handling steps including aspiration, dis-
pensing and washing were conducted using an automated
microtiter plate liquid handling system (GNF system, San
Diego, CA, USA) for blocking, antibody incubation and
nucleus staining at 50 ml volume and cell wash with 200 ml
PBS. The cell staining buffer (Biolegend, 420201) was used to
block and dilute antibodies. Briefly, 4% paraformaldehyde was
dispensed into each well and cells were fixed for 30 min. The
fixation solution was aspirated and 50 ml 0.1% Triton X-100
(Sigma, T8787) was dispensed for permeabilization at 15 min,
followed by 1 h blocking. The cells were incubated overnight at
4�C with primary antibodies at the optimized concentration.
After rinsing 3 times with PBS, secondary antibodies of corre-
lated species were added. Cells were then stained with Hoechst
33342 nuclear dye for 30 min after rinsing with PBS 3 times
and imaged in the INCell2200 imaging system with a 40X
objective lens, and imaging detection was performed using
FITC (LC3, green), CY5 (SQSTM1, red), and DAPI (nucleus,
blue) filter sets. Image analysis was conducted using the INCell
Analyzer software as described above.

Western blotting and immunoprecipitation

After the various treatments, cells were lysed in RIPA buffer
(Enzo Life Sciences, ADI-80-1284) supplemented with protease
inhibitors and phosphatase inhibitor cocktail (Roche,
5892791001 and 4906837001). The cell lysates were clarified by
centrifugation at 20,000 x g for 15 min, and followed by protein
quantification with the BCA assay kit (Thermo Fisher Scien-
tific, 23225). The cell lysates with similar protein concentra-
tions were subsequently applied to Bis-Tris or Tris-Acetate gels
for protein separation, and the proteins were transferred from
gels to polyvinylidene difluoride (PVDF) membrane by dry
transfer (Thermo Fisher Scientific, iBlot 2 Gel Transfer Device)
or tank wet transfer. Immunoblot analysis was performed with
the indicated antibodies and the chemiluminescence signal was
visualized with Luminata Forte Western HRP substrate (EMD
Millipore, WBLUF0100) in the BioSpectrum system (UVP,
LLC). The chemiluminescence intensities of the bands were
quantified in the VisionWorks LS software (UVP, LLC).

For the immunoprecipitation, the Pierce direct magnetic IP/
Co-IP kit was used (Thermo Fisher Scientific, 88828). Briefly,
the antibodies were purified to remove BSA and gelatin, as well
as preservative using the Pierce Antibody Clean-up Kit
(Thermo Fisher Scientific, 44600), followed by coupling the
purified antibodies to the activated N-hydroxysuccinimide
magnetic beads. The antibody-coupled beads were washed to
remove any noncovalently bound antibodies and quenched.
Cell lysates were subjected to immunoprecipitation by incuba-
tion with the antibody-coupled beads, followed by a wash to

remove non-bound proteins. The samples were then eluted in a
low-pH elution buffer to dissociate the coprecipitated proteins
that were analyzed by western blotting.

Cellular thermal shift assay (CETSA)

CETSA was conducted as previously described.38 Cells were har-
vested and rinsed with PBS, then re-suspended in detergent-free
buffer (25 mM HEPES, pH 7.0, 20 mM MgCl2, 2 mM DTT)
supplemented with protease inhibitors and phosphatase inhibitor
cocktail. The cell suspensions were lysed via 3 freeze-thaw cycles
with liquid nitrogen, followed by centrifugation at 20,000 g for
20 min at 4�C to separate the soluble fraction from the cell
debris. For the CETSA melting curve experiments, the cell lysates
were diluted in detergent-free buffer and divided into 2 aliquots,
followed by treatment with or without 300 mM MbCD. After
30-min treatment at room temperature, each sample was divided
into 14 small aliquots in 100 ml/tube and heated individually at
different temperatures (37-63�C with 2�C interval) for 3 min in
a thermal cycler (Eppendorf), followed by immediate cooling for
3 min on ice. The heated cell extracts were centrifuged at
20,000 £ g for 20 min at 4�C to separate the soluble fractions
from precipitates. After centrifugation, the supernatant was ana-
lyzed by western blotting with anti-PRKAB1/2 and PRKAA anti-
body. The relative chemiluminescence intensity of each sample
at different temperatures was used to generate the temperature-
dependent melting curve. The apparent aggregation temperature
(Tagg) for each AMPK subunit in each cell line was calculated by
nonlinear regression. For isothermal dose-response fingerprint
(ITDR) experiments, the cell lysates were treated with MbCD at
14-point serial dilutions ranging 300 to 1000 mM and were then
heated at 53�C following the procedure described above. DMSO,
a solvent, was used as a vehicle control. Western blotting analysis
of the supernatant with anti-PRKAB1/2 antibody and anti-
ACTB/b-actin was conducted. The relative chemiluminescence
intensity of PRKAB1 or PRKAB2 subunit was normalized with
ACTB and the binding affinity of a compound with PRKAB1 or
PRKAB2 subunit was calculated by nonlinear regression. All
data represent mean § SEM of at least 3 replicates.

TR-FRET assay

A cell-based homogeneous TR-FRET assay kit (Cisbio Bioas-
says, 64MPKPEG) was used to quantify the levels of phosphor-
ylated threonine 172 (phospho-Thr172) on PRKAA, indicating
the activation of AMPK. The phospho-AMPK assay involves 2
specific monoclonal anti-AMPK antibodies, one labeled with
Eu3C-cryptate (donor) and the other with d2 (acceptor). While
one antibody specifically binds to with the phosphorylated
threonine 172 residue, the other antibody binds to a nonphos-
phorylated portion of PRKAA, bringing the 2 dyes in close
proximity for FRET. The FRET signal is directly proportional
to levels of phospho-Thr172 on PRKAA. The experiment was
conducted following the manufacturer’s protocol. Briefly, cells
were harvested and plated into white bottom solid 384-well
plates (Greiner Bio-One, 781074) with 10 mg/ml rhVTN-N
supplemented StemPro NSC SFM (Life Technologies,
A1050901) at a density of 20,000 cells/well. Cells were incu-
bated overnight, followed by compound treatment for 90 min.
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The cells were lysed in assay plates and 2 reagent mixtures from
the assay kit were added into the wells sequentially. The assay
plates were incubated overnight at RT, followed by TR-FRET
detection in an EnVision plate reader (Perkin Elmer) with an
excitation of 320 nm and emission-1 of 620 nm and emission-2
of 665 nm. The fluorescence signal ratio of 665 nm to 620 nm
was calculated and used for quantification. All data represent
mean § SEM of at least 3 replicates.

Data analysis

Half maximal inhibitory (IC50) or activating (EC50) concentra-
tion value was calculated using Prism software (GraphPad Soft-
ware). Unless otherwise noted, all values are expressed as the
mean § SEM. For the statistical analysis, results were analyzed
using one-way or 2-way ANOVA and differences were consid-
ered significant if p < 0.05.

Abbreviations

AMPK AMP-activated protein kinase
ATG autophagy related
CETSA cellular thermal shift assay
hESC human embryonic stem cells
HPbCD 2-hydroxypropyl-b-cyclodextrin
iPSCs induced pluripotent stem cells
ITDRF isothermal dose-response fingerprints
MAP1LC3B/LC3B microtubule associated protein 1 light

chain 3B
MbCD methyl-b-cyclodextrin
MEF mouse embryonic fibroblast
MTORC1 mechanistic target of rapamycin complex 1
NPC Niemann-Pick disease, type C
NSCs neural stem cells
PRKAA protein kinase AMP-activated catalytic

subunit alpha
PRKAB protein kinase AMP-activated non-cata-

lytic subunit beta
SNARE soluble N-ethylmaleimide-sensitive factor

attachment protein receptor
SQSTM1 sequestosome 1
Tagg, apparent aggregation temperature
TFEB transcription factor EB
TR-FRET time-resolved fluorescence energy transfer
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