41 research outputs found

    Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes.

    Get PDF
    Glaucoma is characterized by a progressive loss of retinal ganglion cells and their axons, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role. However, whether the activation of cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway is associated with astrocyte dysfunction in the ONH remains unknown. We report here that the cAMP/protein kinase A (PKA) pathway is critical to ONH astrocyte dysfunction, leading to caspase-3 activation and cell death via the AKT/Bim/Bax signaling pathway. Furthermore, elevated intracellular cAMP exacerbates vulnerability to oxidative stress in ONH astrocytes, and this may contribute to axonal damage in glaucomatous neurodegeneration. Inhibition of intracellular cAMP/PKA signaling activation protects ONH astrocytes by increasing AKT phosphorylation against oxidative stress. These results strongly indicate that activation of cAMP/PKA pathway has an important role in astrocyte dysfunction, and suggest that modulating cAMP/PKA pathway has therapeutic potential for glaucomatous ONH degeneration

    Establishment of particulate matter-induced lung injury model in mouse

    Get PDF
    Background Particulate matter (PM) is one of the principal causes of human respiratory disabilities resulting from air pollution. Animal models have been applied to discover preventive and therapeutic drugs for lung diseases caused by PM. However, the induced severity of lung injury in animal models using PM varies from study to study due to disparities in the preparation of PM, and the route and number of PM administrations. In this study, we established an in vivo model to evaluate PM-induced lung injury in mice. Results PM dispersion was prepared using SRM2975. Reactive oxygen species were increased in MLE 12 cells exposed to this PM dispersion. In vivo studies were conducted in the PM single challenge model, PM multiple challenge model, and PM challenge with ovalbumin-induced asthma using the PM dispersion. No histopathological changes were observed in lung tissues after a single injection of PM, whereas mild to moderate lung inflammation was obtained in the lungs of mice exposed to PM three times. However, fibrotic changes were barely seen, even though transmission electron microscopy (TEM) studies revealed the presence of PM particles in the alveolar macrophages and alveolar capillaries. In the OVA-PM model, peribronchial inflammation and mucous hypersecretion were more severe in the OVA+PM group than the OVA group. Serum IgE levels tended to increase in OVA+PM group than in OVA group. Conclusions In this study, we established a PM-induced lung injury model to examine the lung damage induced by PM. Based on our results, repeated exposures of PM are necessary to induce lung inflammation by PM alone. PM challenge, in the presence of underlying diseases such as asthma, can also be an appropriate model for studying the health effect of PM.This research was supported by Univera Co., Ltd., as one of the CAP projects and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03043708)

    Toll-like Receptors 2 and 4 and Their Mutations in Patients with Otitis Media and Middle Ear Effusion

    Get PDF
    ObjectivesToll-like receptors (TLRs) detect microbial infections and they can directly induce innate host defense responses. TLR 2 has been shown to be primarily involved in the recognition of peptidoglycans and lipoteichoic acid of gram positive bacteria. TLR 4 recognizes lipopolysaccharides and lipoteichoic acids from both gram-negative and gram-positive bacteria. Both mutations lead a reduced capacity to elicit inflammation and they increase the risk for gram-positive and negative infections. This study was performed to investigate the expressions of TLR 2 and 4 and their mutations in patients suffering with otitis media and middle ear effusion.MethodsMiddle ear fluid samples were collected from 40 otitis media effusion (OME) patients who had ventilating tubesinserted. Bacteria in the effusion fluid were detected by standard bacterial culture. The secreted IgG, IgA and IgM were measured by Enzyme-linked immunosorbent assay. TLR 2 and 4 were assessed by performing RT-PCR. The genomic DNA from each patient was isolated from the middle ear fluid samples that were collected from 60 OME patients, and the presence of mutations was determined by performing restriction digestion and DNA sequencing analysis.ResultsAmong the 40 middle ear fluid samples, bacteria were detected in 13 middle ear fluid samples. The amounts of IgM, IgA, and IgG were 151.20±60.94 ng/mL, 21.59±7.96 ng/mL and 11.55±16.98 ng/mL, respectively. TLR 2 and 4 were expressed in the middle ear fluid and the expression of TLR 2 was higher than that of TLR 4. However, there was no correlation between the expressions of TLR 2 and 4, and the concentration of immunoglobulin or the presence of bacteria (P>0.05). There ware no mutations of TLR 2 (Arg753Gln, Arg677Trp) and TLR 4 (Asp299Gly, Thr399Ile).ConclusionTLR 2 and 4 were expressed in all the middle ear fluid samples of OME, but the mutations of TLR 2 and 4 were not detected. TLR 2 and 4 may play a vital role in the immunological responses of patients with OME

    Cholesterol Trafficking: An Emerging Therapeutic Target for Angiogenesis and Cancer

    No full text
    Cholesterol is an essential structural component of cellular membranes. In addition to the structural role, it also serves as a precursor to a variety of steroid hormones and has diverse functions in intracellular signal transduction. As one of its functions in cell signaling, recent evidence suggests that cholesterol plays a key role in regulating angiogenesis. This review discusses the role of cholesterol in angiogenesis, with a particular emphasis on cholesterol trafficking in endothelial cell signaling. Small molecule inhibitors of cholesterol trafficking and their preclinical and clinical development targeting angiogenesis and cancer are also discussed
    corecore