34,069 research outputs found
Prediction of inherited genomic susceptibility to 20 common cancer types by a supervised machine-learning method.
Prevention and early intervention are the most effective ways of avoiding or minimizing psychological, physical, and financial suffering from cancer. However, such proactive action requires the ability to predict the individual's susceptibility to cancer with a measure of probability. Of the triad of cancer-causing factors (inherited genomic susceptibility, environmental factors, and lifestyle factors), the inherited genomic component may be derivable from the recent public availability of a large body of whole-genome variation data. However, genome-wide association studies have so far showed limited success in predicting the inherited susceptibility to common cancers. We present here a multiple classification approach for predicting individuals' inherited genomic susceptibility to acquire the most likely phenotype among a panel of 20 major common cancer types plus 1 "healthy" type by application of a supervised machine-learning method under competing conditions among the cohorts of the 21 types. This approach suggests that, depending on the phenotypes of 5,919 individuals of "white" ethnic population in this study, (i) the portion of the cohort of a cancer type who acquired the observed type due to mostly inherited genomic susceptibility factors ranges from about 33 to 88% (or its corollary: the portion due to mostly environmental and lifestyle factors ranges from 12 to 67%), and (ii) on an individual level, the method also predicts individuals' inherited genomic susceptibility to acquire the other types ranked with associated probabilities. These probabilities may provide practical information for individuals, heath professionals, and health policymakers related to prevention and/or early intervention of cancer
Dynamically Adjusting the Mining Capacity in Cryptocurrency with Binary Blockchain
Many cryptocurrencies rely on Blockchain for its operation. Blockchain serves as a public ledger where all the completed transactions can be looked up. To place transactions in the Blockchain, a mining operation must be performed. However, due to a limited mining capacity, the transaction confirmation time is increasing. To mitigate this problem many ideas have been proposed, but they all come with own challenges. We propose a novel parallel mining method that can adjust the mining capacity dynamically depending on the congestion level. It does not require an increase in the block size or a reduction of the block confirmation time. The proposed scheme can increase the number of parallel blockchains when the mining congestion is experienced, which is especially effective under DDoS attack situation. We describe how and when the Blockchain is split or merged, how to solve the imbalanced mining problem, and how to adjust the difficulty levels and rewards. We then show the simulation results comparing the performance of binary blockchain and the traditional single blockchain
- …