9,216 research outputs found

    Direct and Indirect Detection of Neutralino Dark Matter and Collider Signatures in an SO(10)SO(10) Model with Two Intermediate Scales

    Full text link
    We investigate the detectability of neutralino Dark Matter via direct and indirect searches as well as collider signatures of an SO(10)SO(10) model with two intermediate scales. We compare the direct Dark Matter detection cross section and the muon flux due to neutralino annihilation in the Sun that we obtain in this model with mSUGRA predictions and with the sensitivity of current and future experiments. In both cases, we find that the detectability improves as the model deviates more from mSUGRA. In order to study collider signatures, we choose two benchmark points that represent the main phenomenological features of the model: a lower value of âˆŁÎŒâˆŁ|\mu| and reduced third generation sfermion masses due to extra Yukawa coupling contributions in the Renormalization Group Equations, and increased first and second generation slepton masses due to new gaugino loop contributions. We show that measurements at the LHC can distinguish this model from mSUGRA in both cases, by counting events containing leptonically decaying Z0Z^0 bosons, heavy neutral Higgs bosons, or like--sign lepton pairs.Comment: 21 pages, 16 figure

    Fluxon Dynamics of a Long Josephson Junction with Two-gap Superconductors

    Full text link
    We investigate the phase dynamics of a long Josephson junction (LJJ) with two-gap superconductors. In this junction, two channels for tunneling between the adjacent superconductor (S) layers as well as one interband channel within each S layer are available for a Cooper pair. Due to the interplay between the conventional and interband Josephson effects, the LJJ can exhibit unusual phase dynamics. Accounting for excitation of a stable 2π\pi-phase texture arising from the interband Josephson effect, we find that the critical current between the S layers may become both spatially and temporally modulated. The spatial critical current modulation behaves as either a potential well or barrier, depending on the symmetry of superconducting order parameter, and modifies the Josephson vortex trajectories. We find that these changes in phase dynamics result in emission of electromagnetic waves as the Josephson vortex passes through the region of the 2π\pi-phase texture. We discuss the effects of this radiation emission on the current-voltage characteristics of the junction.Comment: 14 pages, 6 figure

    Does Antarctic Krill Employ Body Shrinkage as an Overwintering Strategy?

    Get PDF
    To determine if Antarctic krill employ body shrinkage as one of its overwintering mechanisms in the field, Euphausia superba and Euphausia crystallorophias were collected during fall and winter in and around Marguerite Bay through US Southern Ocean GLOBEC field programs during fall and winter 2001 and 2002. The relationships between the body length and weight of both krill species were exponentially correlated with no significant differences between the two species (p\u3e0.05). The ratio between eye diameter and body length of individual krill was examined in an expectation that it could be used as an indicator of the body shrinkage as previously suggested by Shin and Nicol (2002). These ratios were significantly different between the two krill species. Especially, E. crystallorophias had bigger eyes than E. superba. In both krill species, eye diameters were highly correlated with body lengths (regression coefficients ≄ 0.70). For E. crystallorophias, no significant differences of the ratio of eye diameter/body length were detected between fall and winter. Even though the ratios for E. superba were seasonally varied, it was not clear whether body shrinkage was an actual and critical overwintering mechanism for the krill population found in this study area. These results suggest that some individuals of E. superba might experience the body shrinkage during a part of their life, but this morphological index alone (eye diameter/body length) may be insufficient to unambiguously separate the shrunk krill from the non-shrunk ones in the field-collected animals

    Effects of Resonant Cavity on Macroscopic Quantum Tunneling of Fluxon in Long Josephson Junctions

    Full text link
    We investigate the effects of high-Q_c resonant cavity on macroscopic quantum tunneling (MQT) of fluxon both from a metastable state to continuum and from one degenerate ground-state of a double-well potential to the other. By using a set of two coupled perturbed sine-Gordon equations, we describe the tunneling processes in linear long Josephson junctions (LJJs) and find that MQT in the resonant cavity increases due to potential renomalization, induced by the interaction between the fluxon and cavity.Enhancement of the MQT rate in the weak-coupling regime is estimated by using the experimantally accessible range of the model parameters. The tunneling rate from the metastable state is found to increase weakly with increasing junction-cavity interaction strength. However, the energy splitting between the two degenerate ground-states of the double-well potential increases significantly with increasing both the interaction strength and frequency of the resonant cavity mode. Finally, we discuss how the resonant cavity may be used to tune the property of Josephson vortex quantum bits.Comment: Accepted for publication in Phy. Rev.

    Monoclinic and Correlated Metal Phase in VO_2 as Evidence of the Mott Transition: Coherent Phonon Analysis

    Full text link
    In femtosecond pump-probe measurements, the appearance of coherent phonon oscillations at 4.5 THz and 6.0 THz indicating the rutile metal phase of VO_2 does not occur simultaneously with the first-order metal-insulator transition (MIT) near 68^oC. The monoclinic and correlated metal(MCM) phase between the MIT and the structural phase transition (SPT) is generated by a photo-assisted hole excitation which is evidence of the Mott transition. The SPT between the MCM phase and the rutile metal phase occurs due to subsequent Joule heating. The MCM phase can be regarded as an intermediate non-equilibrium state.Comment: 4 pages, 2 figure

    Nanotextured Morphology of Poly(methyl methacrylate) and Ultraviolet Curable Poly(urethane acrylate) Blends via Phase Separation

    Get PDF
    Domain structures of spin-coated immiscible poly(methyl methacrylate) (PMMA) and ultraviolet (UV) curable poly(urethane acrylate) (PUA) blends were studied using atomic force microscopy (AFM). Spin casting the PMMA/PUA blends in propylene glycol monomethyl ether acetate (PGMEA) was accompanied with phase separation, and PUA was subsequently cross-linked under UV radiation. Selective dissolution of PMMA in the phase-separated films was feasible using tetrahydrofuran (THF) solvent after the UV curing process, because the cured PUA material is highly stable against THF. Morphology of phase-separated structure, including domain size and height, could be controlled by varying total concentration of the blended solution, and various nanoscale features such as island-like and hole-like structures were achieved by changing weight ratio of the two immiscible polymers

    Elevated intracellular cAMP exacerbates vulnerability to oxidative stress in optic nerve head astrocytes.

    Get PDF
    Glaucoma is characterized by a progressive loss of retinal ganglion cells and their axons, but the underlying biological basis for the accompanying neurodegeneration is not known. Accumulating evidence indicates that structural and functional abnormalities of astrocytes within the optic nerve head (ONH) have a role. However, whether the activation of cyclic adenosine 3',5'-monophosphate (cAMP) signaling pathway is associated with astrocyte dysfunction in the ONH remains unknown. We report here that the cAMP/protein kinase A (PKA) pathway is critical to ONH astrocyte dysfunction, leading to caspase-3 activation and cell death via the AKT/Bim/Bax signaling pathway. Furthermore, elevated intracellular cAMP exacerbates vulnerability to oxidative stress in ONH astrocytes, and this may contribute to axonal damage in glaucomatous neurodegeneration. Inhibition of intracellular cAMP/PKA signaling activation protects ONH astrocytes by increasing AKT phosphorylation against oxidative stress. These results strongly indicate that activation of cAMP/PKA pathway has an important role in astrocyte dysfunction, and suggest that modulating cAMP/PKA pathway has therapeutic potential for glaucomatous ONH degeneration

    Properties of Central Caustics in Planetary Microlensing

    Full text link
    To maximize the number of planet detections, current microlensing follow-up observations are focusing on high-magnification events which have a higher chance of being perturbed by central caustics. In this paper, we investigate the properties of central caustics and the perturbations induced by them. We derive analytic expressions of the location, size, and shape of the central caustic as a function of the star-planet separation, ss, and the planet/star mass ratio, qq, under the planetary perturbative approximation and compare the results with those based on numerical computations. While it has been known that the size of the planetary caustic is \propto \sqrt{q}, we find from this work that the dependence of the size of the central caustic on qq is linear, i.e., \propto q, implying that the central caustic shrinks much more rapidly with the decrease of qq compared to the planetary caustic. The central-caustic size depends also on the star-planet separation. If the size of the caustic is defined as the separation between the two cusps on the star-planet axis (horizontal width), we find that the dependence of the central-caustic size on the separation is \propto (s+1/s). While the size of the central caustic depends both on ss and q, its shape defined as the vertical/horizontal width ratio, R_c, is solely dependent on the planetary separation and we derive an analytic relation between R_c and s. Due to the smaller size of the central caustic combined with much more rapid decrease of its size with the decrease of q, the effect of finite source size on the perturbation induced by the central caustic is much more severe than the effect on the perturbation induced by the planetary caustic. Abridged.Comment: 5 pages, 4 figures, ApJ accepte
    • 

    corecore