29 research outputs found

    Asymptotics in the time-dependent Hawking and Unruh effects

    Get PDF
    In this thesis, we study the Hawking and Unruh effects in time-dependent situations, as registered by localised spacetimes observers in several asymptotic situations. (Full abstract inside document.)Comment: Thesis submitted to the University of Nottingham for the Degree of Doctor of Philosophy. Thesis supervisor: Dr. Jorma Louko. 230 pages. 20 figure

    A short review of the Casimir effect with emphasis on dynamical boundary conditions

    Full text link
    We give a short review on the static and dynamical Casimir effects, recalling their historical prediction, as well as their more recent experimental verification. We emphasise on the central role played by so-called {\it dynamical boundary conditions} (for which the boundary condition depends on a second time derivative of the field) in the experimental verification of the dynamical Casimir effect by Wilson et al. We then go on to review our previous work on the static Casimir effect with dynamical boundary conditions, providing an overview on how to compute the so-called local Casimir energy, the total Casimir energy and the Casimir force. We give as a future perspective the direction in which this work should be generalised to put the theoretical predictions of the dynamical Casimir effect experiments on a rigorous footing.Comment: Contribution to the joint Proceedings of the XIX Mexican School of Particles and Fields and the XXXV Annual Meeting of the Division of Particles and Fields of the Mexican Society of Physics. 8 page

    Mode solutions for a Klein-Gordon field in anti-de Sitter spacetime with dynamical boundary conditions of Wentzell type

    Full text link
    We study a real, massive Klein-Gordon field in the Poincar\'e fundamental domain of the (d+1)(d+1)-dimensional anti-de Sitter (AdS) spacetime, subject to a particular choice of dynamical boundary conditions of generalized Wentzell type, whereby the boundary data solves a non-homogeneous, boundary Klein-Gordon equation, with the source term fixed by the normal derivative of the scalar field at the boundary. This naturally defines a field in the conformal boundary of the Poincar\'e fundamental domain of AdS. We completely solve the equations for the bulk and boundary fields and investigate the existence of bound state solutions, motivated by the analogous problem with Robin boundary conditions, which are recovered as a limiting case. Finally, we argue that both Robin and generalized Wentzell boundary conditions are distinguished in the sense that they are invariant under the action of the isometry group of the AdS conformal boundary, a condition which ensures in addition that the total flux of energy across the boundary vanishes.Comment: 12 pages, 1 figure. In V3: refs. added, introduction and conclusions expande
    corecore