235 research outputs found

    Analysis of Hydrogen Fuel Cell Powerplant Architectures for Future Transport Applications

    Full text link
    [ES] A la luz de la crisis medioambiental y del creciente interés en el uso del H2 para avanzar hacia la Economía del Hidrógeno, esta tesis tiene como objetivo analizar y optimizar nuevas arquitecturas de sistemas propulsivos de FCV para aplicaciones en turismos y vehículos pesados en términos de rendimiento, durabilidad e impacto medioambiental. Para ello, se ha desarrollado una plataforma de modelado de FCV multifísica y flexible que integra un modelo de pila de combustible validado junto con los componentes del BoP, los componentes mecánicos y eléctricos del vehículo y el sistema propulsivo, un modelo de degradación de FC semi-empírico informado por tendencias físicas diseñado para ser utilizado en condiciones de conducción y un optimizador de EMS en tiempo real que ofrece el mejor rendimiento dado un diseño de sistema propulsivo y un ciclo de conducción, de tal forma que todas las arquitecturas propuestas para una aplicación determinada sean comparables en términos justos. La discusión de los resultados puede dividirse en tres partes diferentes. La primera está orientada a la optimización del rendimiento del FCS. Los resultados de esta parte ayudaron a identificar la estrategia de gestión del aire que, dado un conjunto de restricciones impuestas en los componentes del BoP, maximizaba la potencia neta del FCS (eficiencia) para cada valor de densidad de corriente. El balance energético resultante, que comprende la potencia producida por la pila de combustible, las perdidas electroquímicas y el consumo de los componentes del BoP, fue analizado y utilizado para determinar y diseñar la estrategia de control de los actuadores del BoP para condiciones de conducción. La segunda parte se centra en la evaluación y optimización, cuando es posible, de la arquitectura FCREx para aplicaciones de turismos y la configuración multi-FCS para aplicaciones de vehículos de transporte pesado. Desde el punto de vista del rendimiento, la arquitectura FCREx ofrecía un consumo mínimo de H2 con una elevada potencia de la pila de combustible y una gran capacidad de la batería, pero este diseño podría ser prohibitivo en términos de costes. Podía ofrecer hasta un 16.8-25% menos de consumo de H2 y un 6.8% menos de consumo de energía. La limitación en la dinámica de esta arquitectura aumento la durabilidad de la FC en un 110% con una penalización en el consumo de H2 del 4.7%. La arquitectura multi-FCS para aplicaciones pesadas podría funcionar con una dinámica aún menor, con un aumento de la durabilidad de la pila del 471% con una penalización en el consumo de H2 del 3.8%, ya que el perfil de conducción de los vehículos pesados suele ser menos dinámico. El control y el dimensionamiento diferencial solo podrían aportar beneficios en términos de impacto ambiental o de coste, pero no de rendimiento. La última parte considera los resultados obtenidos en términos de rendimiento y durabilidad para analizar el impacto medioambiental de cada arquitectura. La estrategia de producción de H2 afecta significativamente a las emisiones del ciclo de vida en ambas aplicaciones sobre cualquier otra elección de diseño. El diseño óptimo para la arquitectura FCREx que minimiza las emisiones tiene una alta potencia de la pila de combustible y una capacidad moderada de la batería. En el caso de la aplicación para vehículos pesados, se identificó la dinámica de control óptima para cada diseño y estrategia de producción de H2, y se determinó que la estrategia de diseño de dimensionado diferencial solo proporcionaba beneficios si se consideraba una tecnología de pila de combustible diferente para las distintas pilas integradas en el sistema propulsivo.[CA] A la llum de la crisi mediambiental i del creixent interés en l'ús de l'H2 per a avançar cap a l'Economia de l'Hidrogen, aquesta tesi té com a objectiu analitzar i optimitzar noves arquitectures de sistemes propulsius de FCV per a aplicacions en turismes i vehicles pesants en termes de rendiment, durabilitat i impacte mediambiental. Per a això, s'ha desenvolupat una plataforma de modelatge de FCV multifísica i flexible que integra un model de pila de combustible validat juntament amb els components del BoP, els components mecànics i elèctrics del vehicle i el sistema propulsiu, un model de degradació de pila de combustible semi-empíric informat per tendències físiques dissenyat per a ser utilitzat en condicions de conducció i un optimitzador d'EMS en temps real que ofereix el millor rendiment donat un disseny de sistema propulsiu i un cicle de conducció, de tal forma que totes les arquitectures proposades per a una aplicació determinada siguen comparables en termes justos. La discussió dels resultats pot dividir-se en tres parts diferents. La primera està orientada a l'optimització del rendiment del FCS. Els resultats d'aquesta part van ajudar a identificar l'estratègia de gestió de l'aire que, donat un conjunt de restriccions imposades en els components del BoP, maximitzava la potència neta del FCS (eficiència) per a cada valor de densitat de corrent. El balanç energètic resultant, que comprén la potència produïda per la pila de combustible, les pèrdues electroquímiques i el consum dels components del BoP, va ser analitzat i utilitzat per a determinar i dissenyar l'estratègia de control dels actuadors del BoP per a condicions de conducció. La segona part se centra en l'avaluació i optimització, quan ¿es possible, de l'arquitectura FCREx per a aplicacions de turismes i la configuració multi-FCS per a aplicacions de vehicles de transport pesat. Des del punt de vista del rendiment, l'arquitectura FCREx oferia un consum mínim d'H2 amb una elevada potència de la pila de combustible i una gran capacitat de la bateria, però aquest disseny podría ser prohibitiu en termes de costos. Podia oferir fins a un 16.8-25% menys de consum d'H2 i un 6.8% menys de consum d'energia. La limitació en la dinàmica d'aquesta arquitectura va augmentar la durabilitat de la pila en un 110% amb una penalització en el consum d'H2 del 4.7%. L'arquitectura multi-FCS per a aplicacions pesades podria funcionar amb una dinàmica encara menor, amb un augment de la durabilitat de la pila del 471% i una penalització en el consum d'H2 del 3.8%, ja que el perfil de conducció dels vehicles pesants sol ser menys dinàmic. El control i el dimensionament diferencial només podrien aportar beneficis en termes d'impacte ambiental o de cost, però no de rendiment. L'última part considera els resultats obtinguts en termes de rendiment i durabilitat per a analitzar l'impacte mediambiental de cada arquitectura. L'estratègia de producció d'H2 afecta significativament a les emissions del cicle de vida en totes dues aplicacions sobre qualsevol altra elecció de disseny. El disseny òptim per a l'arquitectura FCREx que minimitza les emissions té una alta potència de la pila de combustible i una capacitat moderada de la bateria. En el cas de l'aplicació per a vehicles pesants, es va identificar la dinàmica de control `optima per a cada disseny i estratègia de producció d'H2, i es va determinar que l'estratègia de disseny de dimensionament diferencial només proporcionava beneficis si es considerava una tecnologia de pila de combustible diferent per a les diferents piles integrades en el sistema propulsiu.[EN] In light of the environmental crisis and the growing interest in the use of H2 to advance toward the Hydrogen Economy, this thesis aims at analyzing and optimizing novel FCV powerplant architectures for passenger car and heavy-duty vehicle applications in terms of performance, durability, and environmental impact. For that purpose, a multi-physics flexible FCV modeling platform was developed integrating a validated FC stack model together with the BoP components, the mechanical and electrical components of the vehicle and powertrain, a semi-empirical physics-informed FC degradation model designed to be used in driving conditions and a real-time EMS optimizer that offers the best performance given a powerplant design and driving cycle so that all the proposed architectures for a given application are comparable. The discussion of the results can be divided into 3 different parts. The first one is oriented towards the FCS performance optimization. The results in this part helped to identify the air management strategy that, given a set of constraints imposed in the BoP components, maximized the FCS net power output (efficiency) for each value of current density. The resulting energy balance comprising the FC stack power produced, the electrochemical losses, and the consumption of the BoP components was analyzed and used to determine and design the control strategy of the BoP actuators for driving cycle conditions. The second part is focused on the evaluation and optimization, when possible, of the FCREx architecture for passenger car applications and the multi-FCS configuration for heavy-duty vehicle applications. Performance-wise the FCREx architecture offered minimum H2 consumption with high FC stack power and high battery capacity, but this design could be prohibitive in terms of costs. It could offer up to 16.8-25% lower H2 consumption and 6.8% lower energy consumption. Limiting the dynamics of this architecture increased the FC durability by 110% with a penalty in H2 consumption of 4.7%. The multi-FCS architecture for heavy-duty applications could operate with even lower dynamics, with an increase in the FC durability of 471% with a penalty in H2 consumption of 3.8%, since the driving profile of heavy-duty vehicles is usually more steady. Differential control and sizing could only provide benefits in terms of environmental impact or cost, not performance. The last part considers the results obtained in terms of performance and durability to analyze the environmental impact of each architecture. The H2 production pathway affected significantly the life cycle emissions of both applications over any other design choice. The optimum design for FCREx architecture that minimized emissions had high FC stack power and moderate battery capacity. In the case of heavy-duty application, the optimum control dynamics for each design and H2 production pathway were identified, and the differential sizing design strategy was determined to only provide benefits if different FC stack technology was considered for the various stacks in the powerplant.López Juárez, M. (2022). Analysis of Hydrogen Fuel Cell Powerplant Architectures for Future Transport Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18921

    Analysis on the potential of novel hydrogen fuel cell vehicle architectures for automotive applications

    Full text link
    [ES] Este estudio está enfocado al análisis del potencial de nuevas arquitecturas de vehículos de pila de combustible (FCV) de H2 para incrementar el rendimiento y reducir las emisiones cradle-to-grave de gases de efecto invernadero (GHG-100) y NOx, con respecto a los FCV convencionales. Para ello, se llevarán a cabo tres estudios diferentes, cada uno correspondiente a una publicación distinta. En el primer estudio, se aplicará la metodología del análisis del ciclo de vida (LCA) para evaluar el H2 como combustible para reducir las emisiones GHG-100 y NOx en un proceso cradle-to-grave, comparado frente a vehículos con motor de combustión interna alternativo (ICEV) alimentados por combustibles fósiles y vehículos eléctricos de batería (BEV). Los resultados de este estudio mostrarán como los FCV podrían reducir las emisiones cradle-to-grave comparado con cualquier otra de las opciones consideradas en la actualidad y en el escenario de Europa en 2050, pero de ello depende de la estrategia de producción del H2. En este sentido, se recomienda el H2 azul, obtenido por reformado de gas metano (SMR) con captura de CO2 (CCS), por sus bajas emisiones en el proceso well-to-tank y la posibilidad que ofrece de su uso a gran escala y corto plazo. En el segundo estudio el rendimiento de la nueva arquitectura para vehículos de pasajeros FCREx, que emplea la pila de combustible (FC) como range-extender, se evaluará para diferentes combinaciones de máxima potencia de FC, capacidad de la batería y capacidad del tanque de H2. Para ello, se generarán espacios de diseño en función estos tres parámetros de dimensionamiento que muestren la autonomía, el consumo de energía total y de H2 para cada diseño. Con estos datos, se concluirá que esta arquitectura podría reducir el consumo de energía total hasta un 6.8% y el de H2 de un 16.8% a un 25%, comparada con diseños de FCV comerciales equivalentes en autonomía. El diseño FCREx óptimo debería tener una FC con una potencia máxima ≥80 kW y una capacidad de batería cercana a 30 kWh para minimizar tanto los costes de fabricación como el consumo, aunque el diseño óptimo, sólo en términos de consumo, sugiere que es más adecuado emplear baterías de mayor capacidad. El último estudio es una combinación de los dos primeros. En él se combinarán las metodologías de LCA y dimensionado para entender cómo cambian las emisiones GHG-100 y NOx en un proceso cradle-to-grave emitidas para FCVs con arquitectura FCREx cuando se modifican la potencia máxima de la FC, la capacidad de la batería y la capacidad el tanque de H2. A partir de los resultados de este estudio se concluirá que emplear H2 azul podría reducir las emisiones GHG-100 y NOx en un proceso cradle-to-grave en un 60% y 38% respectivamente, con respecto al H2 negro (obtenido por electrólisis empleando el mix energético europeo actual). El diseño óptimo, en términos de emisiones, es aquel con una capacidad de la batería baja-moderada y una potencia máxima de la FC moderada-alta, en contraste con el diseño óptimo sólo en términos de consumo. Finalmente, se sugiere que con el fin de minimizar las emisiones cradle-to-grave de los vehículos con arquitectura FCREx se debe priorizar la descarbonización del proceso de fabricación de las baterías, considerar el H2 azul como vector energético principal y aumentar la fracción de energía renovable en el mix energético europeo.[EN] This study is focused on analysing the potential of novel architectures for H2-based fuel cell vehicles (FCV) to improve the performance and cradle-to-grave greenhouse gases (GHG-100) and NOx emissions of conventional FCVs. To do so, three different studies will be carried out, each one corresponding to a different paper. In the first study, the life cycle assessment (LCA) methodology will be applied to evaluate H2 as a fuel to decrease cradle-to-grave GHG-100 and NOx emissions compared against hydrocarbon-fueld conventional internal combustion engine vehicles (ICEV) and battery electric vehicles (BEV). This study will show how FCV may decrease cradle-to-grave emissions compared to any of the other options in both the current and the EU 2050 scenarios, but it depends on the H2 production pathway. Blue H2, obtained from steam methane reforming (SMR) with carbon capture and storage (CCS), is recommended for its low well-to-tank emissions and the short-term massive application possibility. In the second study, the performance of the novel architecture for passenger vehicles FCREx, that uses the FC as a range-extender, will be evaluated for different combinations of FC maximum power, battery capacity and H2 tank capacity. Design spaces will be generated as a function of these sizing parameters to show the range, H2 consumption and total energy consumption of each design. In this study, it is concluded that this architecture could provide an overall energy saving consumption up to 6.8% and H2 consumption saving ranging from 16.8% to 25% compared to equivalent-in-range commercial FCV. The optimum FCREx design should have a FC maximum power of ≥80 kW and a battery capacity of ~30 kWh to minimize both manufacturing costs and consumption, although the optimum design, only in terms of consumption, suggested high battery capacity. The last study is a combination of the first and the second study. The LCA and sizing methodologies will be combined to understand how the cradle-to-grave GHG-100 and NOx emissions of the FCREx architecture change when the FC maximum power, the battery capacity and the H2 tank capacity change. From this study, it is concluded that considering blue H2 could decrease cradle-to-grave GHG-100 and NOx emissions by 60% and 38% with respect to black H2 (obtained through electrolysis from the current European electricity mix). The optimum design, in terms of emissions, is found to be with low-moderate battery capacity and moderate-high FC maximum power, in contrast to the optimum design in terms of performance only. Finally, with the produced data, it is suggested to prioritize the decarbonization of the battery manufacturing process, considering blue H2 as the main energy carrier and the increase in the renewable energy share in the EU electricity mix to minimize the cradle-to-grave emissions of FCREx vehicles.López Juárez, M. (2021). Analysis on the potential of novel hydrogen fuel cell vehicle architectures for automotive applications. Universitat Politècnica de València. http://hdl.handle.net/10251/175053TFG

    Perceptions about Entrepreneurship in the COVID-19 Era

    Get PDF
    Este trabajo tuvo como objetivo determinar un modelo para el estudio del sector cafetero a través de una investigación transversal y exploratoria con una selección no aleatoria de 100 comerciantes de café y sus derivados. A partir de un modelo estructural, se identificaron las percepciones en torno a cinco dimensiones de oportunidad: económica, financiera, comercial, social y ambiental. Con base en los marcos teóricos y conceptuales abordados, proponemos estudiar las percepciones en torno al emprendimiento por parte de grupos vulnerables dedicados a la comercialización de subproductos del café como medio de subsistencia. Los hallazgos permiten establecer un vínculo entre la teoría de la elección racional y la teoría del capital humano frente a la teoría de los comunes y la teoría del emprendimiento social, los cuales surgen como marcos conceptuales pertinentes para la intervención financiera de este tipo de emprendedores.This work sought to specify a model for the study of the coffee-growing sector. A cross-sectional and exploratory research with a non-random selection of 100 coffee traders was carried out. From a structural model reliability and validity, five dimensional perceptions of economic, financial, sales, social, and environmental opportunity were identified. Based on the theoretical and conceptual frameworks, we propose to study the entrepreneurial perceptions of vulnerable groups dedicated to the trading of coffee byproducts as a subsistence means. The findings allow us to establish a link between rational choice theory and the theory of human capital with respect to the theory of the commons and the theory of social entrepreneurship as conceptual frameworks to highlight the intervention in microfinance made with entrepreneurs

    Evaluación de la actividad de nanopartículas de plata (AgNPs) como nuevos agentes anti-Trypanosoma cruzi

    Get PDF
    43 h. + Anexo. tabls.; figuras; ilus. Contiene Referencia BibliográficaNanopartículas de plata (AgNPs) fueron obtenidas mediante síntesis natural a partir de un extracto de achicoria (Cichorium intybus) para probar su efecto parasiticida sobre epimastigotes y tripomastigotes de la cepa Y de Trypanosoma cruzi (TcII). La producción de AgNPs se realizó mediante reacciones de oxido-reducción a partir de nitrato de plata (AgNO3). Se caracterizaron el tamaño medio y concentración de las nanopartículas obtenidas. Se ensayó la citotoxicidad sobre la línea celular Vero proveniente de mono verde africano (Cercophitecus aethiops) mediante la técnica de captación del rojo neutro. La actividad en epimastigotes se evaluó mediante la exposición durante 96 h a diluciones seriadas de AgNPs a partir del nivel de máxima concentración no citotóxica (MCNC) reportada en el test de citotoxicidad. La actividad oxidativa fue cuantificada con la sonda H2DCFDA usando espectrofluorimetría. Se realizó microscopía de fluorescencia sobre los epimastigotes tratados con la IC50 de AgNPs y grupos control a las 96 h. La actividad en tripomastigotes se realizó con un ensayo en sangre de ratón obtenida a los 15 días post infección. Las AgNPs producidas presentaron una absorbancia máxima a una longitud de ≈440nm. El tamaño promedio fue de 67 nm y la concentración de 23 pM. El ensayo de captación del rojo neutro en la linea celular Vero arrojó un valor de MCNC para AgNO3 de 0,0007 mM (700pM) y de 3 pM para las AgNPs sintetizadas. Las AgNPs sobre epimastigotes arrojaron un valor de IC50=1,153 pM para AgNPs a las 96 horas de tratamiento, siendo la MCNC (3 pM) letal para el 100% de los parásitos. Las células presentaron daño evidente. El control con AgNO3 presentó una tasa de inhibición absoluta. Se observó actividad oxidativa en células expuestas a la IC50. En la forma tripomastigote se logró una inhibición máxima del ≈60% a la MCNC. La concentración efectiva 50 (EC50) fue de 2,58 pM.Fil: Juárez, Marcos Daniel. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Fil: Juárez, Marcos Daniel. Universidad Nacional de Córdoba. Facultad de Ciencias Médicas. Centro de Investigación de la Enfermedad de Chagas y Leishmaniasis; Argentina

    Diseño general del Programa de Monitoreo de la Biodiversidad

    Get PDF
    Fil: Juárez, Marcos César Nicolás Santos. División Zoología Vertebrados. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata; ArgentinaFil: Aguerre, Gimena. Equipo de análisis e integración del programa de Monitoreo de la Biodiversidad en Camisea; PerúFil: Trucco, Carlos. Universidad Nacional de Salta. Facultad de Ciencias Naturales; Argentin

    Synthesis and Characterization of CMK Porous Carbons Modified with Metals Applied to Hydrogen Uptake and Storage

    Get PDF
    In this chapter, we have shown that hopeful hydrogen storage material can be obtained by ordered mesoporous carbons (carbons mesostructured from Korea, CMK-1 and CMK-3) and modified with metal/cations species. The pristine CMK-1 and CMK-3 were synthesized by replication using MCM-48 and SBA-15 as hard templates and sucrose as a carbon source. Incorporation of metal species was carried out by wetness impregnation. The mesoporous materials modified were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), RAMAN, transmission electron microscopy (TEM), and adsorption/desorption N2 isotherms. Carbon modified with metal/cations shows a better capacity for hydrogen uptake than that of the mesoporous carbons. The evolution of high-pressure hydrogen adsorption measured at 77 K shows that composites can significantly enhance hydrogen adsorption capacity and hydrogen storage performance of carbon materials, proving to be prospective candidates for application in hydrogen storage. The improved activity and the larger performance of composite materials are attributed to improved dispersion of uniform metal/cations nanoparticles as well as to efficient use of the support, which may originate a high-surface area and pore volume, allowing a large dispersion of clusters

    A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications

    Full text link
    [EN] In this study, durability and performance prediction were integrated in the sizing process of the FC stack of a fuel cell range-extender (FCREx) vehicle together with the design of a dynamics-limited control strategy. For that purpose, a FCREx vehicle model integrating a FC stack, balance of plant, battery, H-2 tank and vehicle body (C-class SUV) validated in previous studies was used. To predict FC stack degradation rate, a novel semi-empirical multi-layered degradation modeling framework for automotive application is proposed and developed. Degradation rates are calculated based on reference degradation rates measured at reference and known conditions (1st layer) and scaled with the electrochemical phenomena (2nd layer) and the operating conditions (3rd layer) through scaling functions based on physical tendencies. Results show how increasing the FC stack power decreases H-2 consumption but increases durability, while increasing the dynamic limitations on the control strategy increases both H-2 consumption and durability. The isolated effect of sizing implied a decrease in H-2 consumption of-3% and an increase in FC stack durability of similar to 53% when comparing the 40 kW and 100 kW designs. In contrast, the effect of dynamic limitations was significantly perceived in the 40 kW design which implied an increase in H-2 consumption close to 8% and an increase in durability of 294% when comparing the infinite dynamics and the highest dynamically restricted cases. Nevertheless, the effect of sizing is neglected under high dynamic limitation and limiting the current density change rate to 0.001 A/cm(2) s may prevent the control strategy from fulfilling the charge sustaining mode in aggressive driving. Based on these results, a set of recommendations were elaborated for FC stack and FCV manufacturers aiming to apply FCREx architecture to passenger car vehicles.This research has been partially funded by the Spanish Ministry of Science, Innovation, and University through the University Faculty Training (FPU) program (FPU19/00550) and FEDER and the Generalitat Valenciana, Consellera dInnovaci, Universitats, Ciencia i Societat Digital through project IDIFEDER/2021/039.Desantes J.M.; Novella Rosa, R.; Pla Moreno, B.; López-Juárez, M. (2022). A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications. Applied Energy. 317:1-17. https://doi.org/10.1016/j.apenergy.2022.11913711731
    corecore