6 research outputs found

    The influence of carbohydrate structure on muscle glycogen resynthesis and performance

    No full text
    The present study was designed to evaluate the influence of carbohydrate structure on muscle glycogen resynthesis. Eight college-aged male cyclists performed a depletion exercise protocol to decrease vastus lateralis glycogen concentration. This protocol consisted of 60 min of cycling at 75% V O2max, followed by 6 - one min sprints at 125 % V O2max, with a 1 min rest between each sprint. Following the depletion exercise, the subjects consumed - 3000 kcal over a 12 hour period, which was calculated to meet each subject's estimated daily energy expenditure. The carbohydrate (CHO), fat and protein content represented 65:20:15% of the calories consumed, respectively, and totaled 450 - 550 g of CHO. All of the CHO was derived from 1 of 4 solutions: 1) glucose, 2) maltodextrin (glucose polymer), 3) waxy starch (100% amylopectin), or 4) resistant starch (100% amylose). Muscle biopsies were taken after the depletion exercise protocol and 24 hours after the depletion protocol to determine glycogen concentrations. The postdepletion exercise glycogen concentration was similar in all 4 trials, and averaged 234.7 mmol/kg dry weight (d.w.) muscle. Twenty-four hours after exercise, the increase in muscle glycogen concentration was less in the resistant starch trial (90.8 f 12.8 mmol/kg d.w.) than in the glucose, maltodextrin and waxy starch trials, in which glycogen concentration increased 168.7 mmol/kg d.w. Following the 24 h post-depletion exercise biopsy, each subject performed a 30 min cycling time trial, so that the relationship between muscle glycogen concentration and performance could be examined. There were no differences in work output during the time trial or blood lactate concentration immediately following the time trial in any of the trials. In summary, glycogen resynthesis is attenuated following ingestion of carbohydrate with a high amylose content, relative to amylopectin or glucose; however, short duration performance at intensities < 75% VO2max is unaffected.Thesis (M.S.)School of Physical Educatio

    p50α/p55α Phosphoinositide 3-Kinase Knockout Mice Exhibit Enhanced Insulin Sensitivity

    No full text
    Class Ia phosphoinositide (PI) 3-kinases are heterodimers composed of a regulatory and a catalytic subunit and are essential for the metabolic actions of insulin. In addition to p85α and p85β, insulin-sensitive tissues such as fat, muscle, and liver express the splice variants of the pik3r1 gene, p50α and p55α. Το define the role of these variants, we have created mice with a deletion of p50α and p55α by using homologous recombination. These mice are viable, grow normally, and maintain normal blood glucose levels but have lower fasting insulin levels. Results of an insulin tolerance test indicate that p50α/p55α knockout mice have enhanced insulin sensitivity in vivo, and there is an increase in insulin-stimulated glucose transport in isolated extensor digitorum longus muscle tissues and adipocytes. In muscle, loss of p50α/p55α results in reduced levels of insulin-stimulated insulin receptor substrate 1 (IRS-1) and phosphotyrosine-associated PI 3-kinase but enhanced levels of IRS-2-associated PI 3-kinase and Akt activation, whereas in adipocytes levels of both insulin-stimulated PI 3-kinase and Akt are unchanged. Despite this, adipocytes of the knockout mice are smaller and have increased glucose uptake with altered glucose metabolic pathways. When treated with gold thioglucose, p50α/p55α knockout mice become hyperphagic like their wild-type littermates. However, they accumulate less fat and become mildly less hyperglycemic and markedly less hyperinsulinemic. Taken together, these data indicate that p50α and p55α play an important role in insulin signaling and action, especially in lipid and glucose metabolism

    Molecular characteristics of aged muscle reflect an altered ability to respond to exercise

    No full text
    Etude génétique de l'effet d'un entraînement musculaire chez des hommes âgés (62-75 ans) par rapport à des jeunes hommes (20-30 ans)

    Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones

    No full text
    Activation of peroxisome proliferator-activated receptor γ (PPARγ) by thiazolidinediones (TZDs) improves insulin resistance by increasing insulin-stimulated glucose disposal in skeletal muscle. It remains debatable whether the effect of TZDs on muscle is direct or indirect via adipose tissue. We therefore generated mice with muscle-specific PPARγ knockout (MuPPARγKO) using Cre/loxP recombination. Interestingly, MuPPARγKO mice developed excess adiposity despite reduced dietary intake. Although insulin-stimulated glucose uptake in muscle was not impaired, MuPPARγKO mice had whole-body insulin resistance with a 36% reduction (P < 0.05) in the glucose infusion rate required to maintain euglycemia during hyperinsulinemic clamp, primarily due to dramatic impairment in hepatic insulin action. When placed on a high-fat diet, MuPPARγKO mice developed hyperinsulinemia and impaired glucose homeostasis identical to controls. Simultaneous treatment with TZD ameliorated these high fat–induced defects in MuPPARγKO mice to a degree identical to controls. There was also altered expression of several lipid metabolism genes in the muscle of MuPPARγKO mice. Thus, muscle PPARγ is not required for the antidiabetic effects of TZDs, but has a hitherto unsuspected role for maintenance of normal adiposity, whole-body insulin sensitivity, and hepatic insulin action. The tissue crosstalk mediating these effects is perhaps due to altered lipid metabolism in muscle
    corecore