28 research outputs found

    Lung gene expression and single cell analyses reveal two subsets of idiopathic pulmonary fibrosis (IPF) patients associated with different pathogenic mechanisms.

    No full text
    Idiopathic pulmonary fibrosis is a progressive and debilitating lung disease with large unmet medical need and few treatment options. We describe an analysis connecting single cell gene expression with bulk gene expression-based subsetting of patient cohorts to identify IPF patient subsets with different underlying pathogenesis and cellular changes. We reproduced earlier findings indicating the existence of two major subsets in IPF and showed that these subsets display different alterations in cellular composition of the lung. We developed classifiers based on the cellular changes in disease to distinguish subsets. Specifically, we showed that one subset of IPF patients had significant increases in gene signature scores for myeloid cells versus a second subset that had significantly increased gene signature scores for ciliated epithelial cells, suggesting a differential pathogenesis among IPF subsets. Ligand-receptor analyses suggested there was a monocyte-macrophage chemoattractant axis (including potentially CCL2-CCR2 and CCL17-CCR4) among the myeloid-enriched IPF subset and a ciliated epithelium-derived chemokine axis (e.g. CCL15) among the ciliated epithelium-enriched IPF subset. We also found that these IPF subsets had differential expression of pirfenidone-responsive genes suggesting that our findings may provide an approach to identify patients with differential responses to pirfenidone and other drugs. We believe this work is an important step towards targeted therapies and biomarkers of response

    Virally Activated CD8 T Cells Home to Mycobacterium bovis BCG-Induced Granulomas but Enhance Antimycobacterial Protection Only in Immunodeficient Mice

    No full text
    The effect of secondary infections on CD4 T-cell-regulated chronic granulomatous inflammation is not well understood. Here, we have investigated the effect of an acute viral infection on the cellular composition and bacterial protection in Mycobacterium bovis strain bacille Calmette-Guérin (BCG)-induced granulomas using an immunocompetent and a partially immunodeficient murine model. Acute lymphocytic choriomeningitis virus (LCMV) coinfection of C57BL/6 mice led to substantial accumulation of gamma interferon (IFN-γ)-producing LCMV-specific T cells in liver granulomas and increased local IFN-γ. Despite traffic of activated T cells that resulted in a CD8 T-cell-dominated granuloma, the BCG liver organ load was unaltered from control levels. In OT-1 T-cell-receptor (TCR) transgenic mice, ovalbumin (OVA) immunization or LCMV coinfection of BCG-infected mice induced CD8 T-cell-dominated granulomas containing large numbers of non-BCG-specific activated T cells. The higher baseline BCG organ load in this CD8 TCR transgenic animal allowed us to demonstrate that OVA immunization and LCMV coinfection increased anti-BCG protection. The bacterial load remained substantially higher than in mice with a more complete TCR repertoire. Overall, the present study suggests that peripherally activated CD8 T cells can be recruited to chronic inflammatory sites, but their contribution to protective immunity is limited to conditions of underlying immunodeficiency

    Proteasome Inhibition Is Partially Effective in Attenuating Pre-Existing Immunity against Recombinant Adeno-Associated Viral Vectors

    Get PDF
    Pre-existing immunity against adeno-associated virus (AAV) remains a major challenge facing the clinical use of systemic administration of recombinant AAV vectors for the treatment of genetic and acquired diseases using gene therapy. In this study, we evaluated the potential of bortezomib (marketed under trade name Velcade) to abrogate a pre-existing immunity to AAV in mice, thereby allowing subsequent transduction by a recombinant AAV vector of the same serotype. We demonstrate that bortezomib efficiently reduces AAV-specific IgG titres and moderates the cytotoxic T cell response in mice that have a pre-existing immunity to AAV2/8. Significant depletion of AAV2/8-specific IgG-producing plasma cells in secondary lymphoid organs and bone marrow was observed. However, this inhibition of the immune response by bortezomib was insufficient to allow subsequent re-infection with a recombinant AAV vector of a similar serotype. We show that this shortcoming is probably due to the combination of residual antibody levels and the inability of bortezomib to completely deplete the memory B cells that are re-activated in response to a repeated infection with a recombinant AAV vector. Taken together, the results of this study argue for the use of immunosuppressive therapies that target both plasma and memory B cells for the efficient elimination of pre-existing immunity against AAV2/8 vectors

    Characterization of the Histoplasma capsulatum

    No full text

    Bortezomib treatment significantly reduces anti-AAV IgG titre. a.

    No full text
    <p>Mice were infected with AAV2/8-EV and treated with bortezomib, as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0034684#s2" target="_blank">Materials and Methods</a> section. Sera were collected at the indicated times, and the levels of anti-AAV IgG were determined by titration. <b>b.</b> A subset of the same sera samples was assayed for the total amount of IgG using ELISA. Representative data from two separate experiments with similar outcomes are shown.</p
    corecore