35 research outputs found

    Diagrammatic Monte Carlo study of the acoustic and the BEC polaron

    Get PDF
    We consider two large polaron systems that are described by a Fr\"{o}hlich type of Hamiltonian, namely the Bose-Einstein condensate (BEC) polaron in the continuum and the acoustic polaron in a solid. We present ground-state energies of these two systems calculated with the Diagrammatic Monte Carlo (DiagMC) method and with a Feynman all-coupling approach. The DiagMC method evaluates up to very high order a diagrammatic series for the polaron Green's function. The Feynman all-coupling approach is a variational method that has been used for a wide range of polaronic problems. For the acoustic and BEC polaron both methods provide remarkably similar non-renormalized ground-state energies that are obtained after introducing a finite momentum cutoff. For the renormalized ground-state energies of the BEC polaron, there are relatively large discrepancies between the DiagMC and the Feynman predictions. These differences can be attributed to the renormalization procedure for the contact interaction.Comment: 9 pages, 10 figure

    Photoluminescence of tetrahedral quantum-dot quantum wells

    Full text link
    Taking into account the tetrahedral shape of a quantum dot quantum well (QDQW) when describing excitonic states, phonon modes and the exciton-phonon interaction in the structure, we obtain within a non-adiabatic approach a quantitative interpretation of the photoluminescence spectrum of a single CdS/HgS/CdS QDQW. We find that the exciton ground state in a tetrahedral QDQW is bright, in contrast to the dark ground state for a spherical QDQW. The position of the phonon peaks in the photoluminescence spectrum is attributed to interface optical phonons. We also show that the experimental value of the Huang-Rhys parameter can be obtained only within the nonadiabatic theory of phonon-assisted transitions.Comment: 4 pages, 4 figures, E-mail addresses: [email protected], [email protected], [email protected], [email protected], to be published in Phys. Rev. Letter

    Froehlich Polaron and Bipolaron: Recent Developments

    Full text link
    It is remarkable how the Froehlich polaron, one of the simplest examples of a Quantum Field Theoretical problem, as it basically consists of a single fermion interacting with a scalar Bose field of ion displacements, has resisted full analytical or numerical solution at all coupling since 1950, when its Hamiltonian was first written. The field has been a testing ground for analytical, semi-analytical, and numerical techniques, such as path integrals, strong-coupling perturbation expansion, advanced variational, exact diagonalisation (ED), and quantum Monte Carlo (QMC) techniques. This article reviews recent developments in the field of continuum and discrete (lattice) Froehlich (bi)polarons starting with the basics and covering a number of active directions of research.Comment: 131 pages, 17 figures, 409 references, appear in Reports on Progress in Physic

    Simon Stevin et la musique

    No full text
    Catalogue d’exposition (Bruxelles, Bibliothèque royale de Belgique, 17 septembre-30 octobre 2004)Version en néerlandais Simon Stevin (1548-1620) :De geboorte van de nieuwe wetenschap: « Simon Stevin en de muziek », pp. 161-167info:eu-repo/semantics/publishe

    NATO Advanced Study Institute on Elementary Excitations in Solids, Molecules, and Atoms

    No full text
    corecore