453 research outputs found

    Temporal Interferometry: A Mechanism for Controlling Qubit Transitions During Twisted Rapid Passage with Possible Application to Quantum Computing

    Get PDF
    In an adiabatic rapid passage experiment, the Bloch vector of a two-level system (qubit) is inverted by slowly inverting an external field to which it is coupled, and along which it is initially aligned. In twisted rapid passage, the external field is allowed to twist around its initial direction with azimuthal angle ϕ(t)\phi (t) at the same time that it is inverted. For polynomial twist: ϕ(t)Btn\phi (t) \sim Bt^{n}. We show that for n3n \geq 3, multiple avoided crossings can occur during the inversion of the external field, and that these crossings give rise to strong interference effects in the qubit transition probability. The transition probability is found to be a function of the twist strength BB, which can be used to control the time-separation of the avoided crossings, and hence the character of the interference. Constructive and destructive interference are possible. The interference effects are a consequence of the temporal phase coherence of the wavefunction. The ability to vary this coherence by varying the temporal separation of the avoided crossings renders twisted rapid passage with adjustable twist strength into a temporal interferometer through which qubit transitions can be greatly enhanced or suppressed. Possible application of this interference mechanism to construction of fast fault-tolerant quantum CNOT and NOT gates is discussed.Comment: 29 pages, 16 figures, submitted to Phys. Rev.

    Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule

    Full text link
    We shall revisit the conventional adiabatic or Markov approximation, which --contrary to the semiclassical case-- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that include the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in case the subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure

    Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule

    Full text link
    We shall revisit the conventional adiabatic or Markov approximation, which --contrary to the semiclassical case-- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that include the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in case the subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure

    Dissipation and Decoherence in Nanodevices: a Generalized Fermi's Golden Rule

    Full text link
    We shall revisit the conventional adiabatic or Markov approximation, which --contrary to the semiclassical case-- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally pointed out and partially solved by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, which (i) is physically justified under the same validity restrictions of the conventional Markov approach, (ii) in the semiclassical limit reduces to the standard Fermi's golden rule, and (iii) describes a genuine Lindblad evolution, thus providing a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, the dependence of our approximation on the specific choice of the subsystem (that include the common partial trace reduction) does not threaten positivity, and quantum scattering rates are well defined even in case the subsystem is infinitely extended/has continuous spectrum.Comment: 6 pages, 0 figure

    Avoided crossings in mesoscopic systems: electron propagation on a non-uniform magnetic cylinder

    Full text link
    We consider an electron constrained to move on a surface with revolution symmetry in the presence of a constant magnetic field BB parallel to the surface axis. Depending on BB and the surface geometry the transverse part of the spectrum typically exhibits many crossings which change to avoided crossings if a weak symmetry breaking interaction is introduced. We study the effect of such perturbations on the quantum propagation. This problem admits a natural reformulation to which tools from molecular dynamics can be applied. In turn, this leads to the study of a perturbation theory for the time dependent Born-Oppenheimer approximation

    Frequency Dependence of Quantum Localization in a Periodically Driven System

    Full text link
    We study the quantum localization phenomena for a random matrix model belonging to the Gaussian orthogonal ensemble (GOE). An oscillating external field is applied on the system. After the transient time evolution, energy is saturated to various values depending on the frequencies. We investigate the frequency dependence of the saturated energy. This dependence cannot be explained by a naive picture of successive independent Landau-Zener transitions at avoided level crossing points. The effect of quantum interference is essential. We define the number of Floquet states which have large overlap with the initial state, and calculate its frequency dependence. The number of Floquet states shows approximately linear dependence on the frequency, when the frequency is small. Comparing the localization length in Floquet states and that in energy states from the viewpoint of the Anderson localization, we conclude that the Landau-Zener picture works for the local transition processes between levels.Comment: 12 pages and 6 figure

    A rigorous implementation of the Jeans--Landau--Teller approximation

    Full text link
    Rigorous bounds on the rate of energy exchanges between vibrational and translational degrees of freedom are established in simple classical models of diatomic molecules. The results are in agreement with an elementary approximation introduced by Landau and Teller. The method is perturbative theory ``beyond all orders'', with diagrammatic techniques (tree expansions) to organize and manipulate terms, and look for compensations, like in recent studies on KAM theorem homoclinic splitting.Comment: 23 pages, postscrip
    corecore