17 research outputs found

    Biallelic Variants in PYROXD2 Cause a Severe Infantile Metabolic Disorder Affecting Mitochondrial Function

    Get PDF
    Pyridine Nucleotide-Disulfide Oxidoreductase Domain 2 (PYROXD2; previously called YueF) is a mitochondrial inner membrane/matrix-residing protein and is reported to regulate mitochondrial function. The clinical importance of PYROXD2 has been unclear, and little is known of the protein’s precise biological function. In the present paper, we report biallelic variants in PYROXD2 identified by genome sequencing in a patient with suspected mitochondrial disease. The child presented with acute neurological deterioration, unresponsive episodes, and extreme metabolic acidosis, and received rapid genomic testing. He died shortly after. Magnetic resonance imaging (MRI) brain imaging showed changes resembling Leigh syndrome, one of the more common childhood mitochondrial neurological diseases. Functional studies in patient fibroblasts showed a heightened sensitivity to mitochondrial metabolic stress and increased mitochondrial superoxide levels. Quantitative proteomic analysis demonstrated decreased levels of subunits of the mitochondrial respiratory chain complex I, and both the small and large subunits of the mitochondrial ribosome, suggesting a mitoribosomal defect. Our findings support the critical role of PYROXD2 in human cells, and suggest that the biallelic PYROXD2 variants are associated with mitochondrial dysfunction, and can plausibly explain the child’s clinical presentation

    Riboflavin metabolism: role in mitochondrial function

    No full text
    Riboflavin, known as vitamin B2, a water-soluble vitamin, is an essential nutrient in vertebrates, hence adequate dietary intake is imperative. Riboflavin plays a role in a variety of metabolic pathways, serving primarily as an integral component of its crucial biologically active forms, the flavocoenzymes flavin adenine dinucleotide and flavin mononucleotide. These flavocoenzymes ensure the functionality of numerous flavoproteins including dehydrogenases, oxidases, monooxygenases, and reductases, which play pivotal roles in mitochondrial electron transport chain, β-oxidation of fatty acids, redox homeostasis, citric acid cycle, branched-chain amino acid catabolism, chromatin remodeling, DNA repair, protein folding, and apoptosis. Unsurprisingly, impairment of flavin homeostasis in humans has been linked to various diseases including neuromuscular and neurological disorders, abnormal fetal development, and cardiovascular diseases. This review presents an overview of riboflavin metabolism, its role in mitochondrial function, primary and secondary flavocoenzyme defects associated with mitochondrial dysfunction, and the role of riboflavin supplementation in these conditions

    New indications and controversies in arginine therapy

    No full text
    Arginine is an important, versatile and a conditionally essential amino acid. Besides serving as a building block for tissue proteins, arginine plays a critical role in ammonia detoxification, and nitric oxide and creatine production. Arginine supplementation is an essential component for the treatment of urea cycle defects but recently some reservations have been raised with regards to the doses used in the treatment regimens of these disorders. In recent years, arginine supplementation or restriction has been proposed and trialled in several disorders, including vascular diseases and asthma, mitochondrial encephalopathy lactic acidosis and stroke-like episodes (MELAS), glutaric aciduria type I and disorders of creatine metabolism, both production and transportation into the central nervous system. Herein we present new therapeutic indications and controversies surrounding arginine supplementation or deprivation

    ALG3-CDG (CDG-Id): Clinical, biochemical and molecular findings in two siblings

    No full text
    Congenital disorders of glycosylation (CDG) represent an expanding family of metabolic disorders with a wide range of biochemical, molecular and clinical phenotypes. ALG3-CDG (CDG-Id), due to a defect in endoplasmic reticulum (ER) mannosyltransferase VI, is one of the less common types of CDG-I. We describe two Vietnamese siblings with confirmed ALG3-CDG (CDG-Id) by molecular testing. As far as we are aware, they are the oldest reported patients in the literature at 15 and 21years. They share similar clinical features with previously reported patients including facial dysmorphism, severe psychomotor retardation, microcephaly, seizures, and gastrointestinal symptoms. Furthermore, our sibling pair highlights the intrafamilial variability, the natural clinical course of ALG3-CDG (CDG-Id) and the benefit of reassessing patients with undiagnosed and complex syndromes, particularly when they present with neurological deterioration.publisher: Elsevier articletitle: ALG3-CDG (CDG-Id): Clinical, biochemical and molecular findings in two siblings journaltitle: Molecular Genetics and Metabolism articlelink: http://dx.doi.org/10.1016/j.ymgme.2013.05.020 content_type: article copyright: Crown copyright © 2013 Published by Elsevier Inc. All rights reserved.status: publishe

    ECHS1 mutations in Leigh disease: a new inborn error of metabolism affecting valine metabolism

    No full text
    Two siblings with fatal Leigh disease had increased excretion of S-(2-carboxypropyl)cysteine and several other metabolites that are features of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, a rare defect in the valine catabolic pathway associated with Leigh-like disease. However, this diagnosis was excluded by HIBCH sequencing and normal enzyme activity. In contrast to HIBCH deficiency, the excretion of 3-hydroxyisobutyryl-carnitine was normal in the children, suggesting deficiency of short-chain enoyl-CoA hydratase (ECHS1 gene). This mitochondrial enzyme is active in several metabolic pathways involving fatty acids and amino acids, including valine, and is immediately upstream of HIBCH in the valine pathway. Both children were compound heterozygous for a c.473C > A (p.A158D) missense mutation and a c.414+3G>C splicing mutation in ECHS1. ECHS1 activity was markedly decreased in cultured fibroblasts from both siblings, ECHS1 protein was undetectable by immunoblot analysis and transfection of patient cells with wild-type ECHS1 rescued ECHS1 activity. The highly reactive metabolites methacrylyl-CoA and acryloyl-CoA accumulate in deficiencies of both ECHS1 and HIBCH and are probably responsible for the brain pathology in both disorders. Deficiency of ECHS1 or HIBCH should be considered in children with Leigh disease. Urine metabolite testing can detect and distinguish between these two disorder

    Expanded newborn screening: Outcome in screened and unscreened patients at age 6 years

    No full text
    OBJECTIVE: Tandem mass spectrometry is widely applied to routine newborn screening but there are no long-term studies of outcome. We studied the clinical outcome at six years of age in Australia. METHODS: In a cohort study, we analyzed the outcome at 6 years for patients detected by screening or by clinical diagnosis among >2 million infants born from 1994 to 1998 (1 017 800, all unscreened) and 1998 to 2002 (461 500 screened, 533 400 unscreened) recording intellectual and physical condition, school placement, other medical problems, growth, treatment, diet, and hospital admissions. Results were analyzed separately for medium-chain acyl-CoA dehydrogenase deficiency (MCADD) and other disorders, and grouped patients as those who presented clinically or died in the first 5 days of life; patients presented later or diagnosed by screening, and those with substantially benign disorders. RESULTS: Inborn errors, excluding phenylketonuria, were diagnosed in 116 of 1 551 200 unscreened infants (7.5/100 000 births) and 70 of 461 500 screened infants (15.2/100 000 births). Excluding MCADD, 21 unscreened patients with metabolic disorders diagnosed after 5 days of life died or had a significant intellectual or physical handicap (1.35/100 000 population) compared with 2 of the screened cohort (0.43/100 000; odds ratio: 3.1 [95% CI: 0.73–13.32]). Considering the likely morbidity or mortality among the expected number of never-diagnosed unscreened patients, there would be a significant difference. Growth distribution was normal in all cohorts. CONCLUSION: Screening by tandem mass spectrometry provides a better outcome for patients at 6 years of age, with fewer deaths and fewer clinically significant disabilities.Bridget Wilcken, Marion Haas, Pamela Joy, Veronica Wiley, Francis Bowling, Kevin Carpenter, John Christodoulou, David Cowley, Carolyn Ellaway, Janice Fletcher, Edwin P. Kirk, Barry Lewis, Jim McGill, Heidi Peters, James Pitt, Enzo Ranieri, Joy Yaplito-Lee and Avihu Bone

    SURF1 deficiency:a multi-centre natural history study

    Get PDF
    BACKGROUND: SURF1 deficiency, a monogenic mitochondrial disorder, is the most frequent cause of cytochrome c oxidase (COX) deficient Leigh syndrome (LS). We report the first natural history study of SURF1 deficiency. METHODS: We conducted a multi-centre case notes review of 44 SURF1-deficient patients from ten different UK centres and two Australian centres. Survival data for LRPPRC-deficient LS and nuclear-encoded complex I-deficient LS patients were obtained from previous publications. The survival of SURF1-deficient patients was compared with these two groups using Kaplan-Meier survival analysis and logrank test. RESULTS: The majority of patients (32/44, 73%) presented in infancy (median 9.5 months). Frequent symptoms were poor weight gain (95%, median age 10 months), hypotonia (93%, median age 14 months), poor feeding/vomiting (89%, median age 10 months), developmental delay (88%, median age 14 months), developmental regression (71%, median age 19 months), movement disorder (52%, median age 24 months), oculomotor involvement (52%, median age 29 months) and central respiratory failure (78%, median age 31 months). Hypertrichosis (41%), optic atrophy (23%), encephalopathy (20%), seizures (14%) and cardiomyopathy (2%) were observed less frequently. Lactate was elevated in CSF (mean 4.3 mmol/L) in all patients (30/30) and in blood (mean 4.4 mmol/L) in 31/38 (81%). Fibroblast COX activity was universally decreased (25/25). Normal COX histochemistry was noted in 30% of biopsies, whereas muscle COX activity was reduced in 96% (25/26). Neuroimaging demonstrated lesions characteristic of LS in 28/33 (85%) and atypical findings in 3/33 (9%). Peripheral neuropathy was present in 13/16 (81%) (demyelinating 7/16, axonal 2/16). Kaplan-Meier analysis demonstrated that SURF1-deficient patients experience longer survival (median 5.4 years, p < 0.001) compared to LRPPRC deficiency (median 1.8 years) and nuclear-encoded complex I-deficient LS (median 1.6 years). Survival >10 years was observed in 7 patients, 6 of these patients did not experience neurological regression. The most frequent mutation was c.312_320del10insAT. Five novel mutations (c.468_469delTC, c.799_800delCT, c.575G>A (p.Arg192Gln), c.751+5G>A and c.752-2A>G) were identified. CONCLUSIONS: SURF1-deficient patients have a homogeneous clinical and biochemical phenotype. Early recognition is essential to expedite diagnosis and enable prenatal diagnosis
    corecore