16 research outputs found

    NLOAD: An interactive, web-based modelling tool for nitrogen management in estuaries

    Get PDF
    Abstract. Eutrophication of estuaries is an increasing global concern that requires development of new tools to identify causes, quantify conditions, and propose management options that address this environmental problem. Since eutrophication is often associated with increased inputs of land-derived nitrogen to estuaries, we developed NLOAD, a user-friendly, web-based tool that brings together six different published models that predict nitrogen loading to estuaries and two models that estimate nitrogen concentrations in coastal waters. Here we describe each of the models, demonstrate how NLOAD is designed to function, and then use the models in NLOAD to predict nitrogen loads to Barnegat Bay, New Jersey (USA). The four models that we used to estimate nitrogen loads to Barnegat Bay, when adjusted, all had similar results that matched well with measured values and indicated that Barnegat Bay receives roughly 26 kg NÁha . Atmospheric deposition was the dominant source of nitrogen to Barnegat Bay, followed by fertilizer nitrogen. Wastewater in Barnegat Bay is diverted to an offshore outfall and contributes no nitrogen to the system. The NLOAD tool has an additional feature that allows managers to assess the effectiveness of a variety of management options to reduce nitrogen loads. We demonstrate this feature of NLOAD through simulations in which fertilizer inputs to the Barnegat Bay watershed are reduced. Even modest cutbacks in the use of fertilizers on agricultural fields and lawns can be shown to reduce the amount of N entering Barnegat Bay

    Water Quality (2000-08) and Historical Phosphorus Concentrations from Paleolimnological Studies of Swamp and Speckled Trout Lakes, Grand Portage Reservation, Northeastern Minnesota

    Get PDF
    This is a technical study to determine reference conditions for water quality on the Grand Portage Reservation. It has some historical interest related to human settlement, as well as data useful for monitoring water quality in the future. Reston, VA: U.S. Department of the Interior, U.S. Geological Survey.A paleolimnological approach was taken to aid the Grand Portage Reservation, in northeastern Minnesota, in determining reference conditions for lakes on the reservation. The U.S. Geological Survey, in cooperation with the Grand Portage Band of Chippewa Indians and the Science Museum of Minnesota, conducted a study to describe water quality (2000–08) and historical total phosphorus concentrations (approximately 1781–2006) for Swamp and Speckled Trout Lakes. Results from this study may be used as a guide in establishing nutrient criteria in these and other lakes on the Grand Portage Reservation. Historical phosphorus concentrations were inferred through paleolimnological reconstruction methods involving diatom analysis and lead-210 dating of lake-sediment cores. Historical diatom-inferred total phosphorus concentrations in Swamp Lake ranged from 0.017 to 0.025 milligrams per liter (mg/L) based on diatom assemblages in sediment samples dated 1781–2005. Historical diatom-inferred total phosphorus concentrations in Speckled Trout Lake ranged from 0.008 to 0.014 mg/L based on diatom assemblages in sediment samples dated 1825–2006. In both lakes, historical changes in diatom-inferred total phosphorus concentrations did not exceed model error estimates, indicating that there has been minimal change in total phosphorus concentrations in the two lakes over about two centuries. The pH and alkalinity values of waters in both lakes indicate that general water-quality conditions likely are not threatening fish or acid-intolerant forms of aquatic life. Lake-sediment cores from Swamp and Speckled Trout Lakes were collected in 2006 and dated back to 1781 for Swamp Lake and 1825 for Speckled Trout Lake. A large increase in sediment accumulation rate after 1960 likely was a result of logging along the northeastern shore of Swamp Lake in 1958. The diatom flora of Swamp Lake is very diverse with more than 280 diatom taxa found in the core samples. These diatoms included many rare or uncommon species and several unknown taxa. Minor increases in sediment accumulation rates in the Speckled Trout Lake core occurred between 1840 and 1880. These increases may have resulted from fires following droughts in northeastern Minnesota. Heinselman (1973) identified five periods of fire in the 1800s for the Boundary Waters Canoe Area, Minnesota: 1801, 1824, 1863–64, 1875, and 1894. Most of these fire periods followed prolonged droughts of subcontinental extent, including the 1864 drought. Similar to the Swamp Lake core, the diatom flora of the Speckled Trout Lake core was very diverse and dominated by softwater diatoms. More than 215 diatom taxa were found in the core samples including many rare or uncommon species and several unknown taxa. Results of loss-on-ignition analyses indicated that sediment from Swamp Lake historically has been dominated by the inorganic component with a shift to an organic component in modern sedimentation. Median values of recent (2000–08) total phosphorus concentrations in water-quality samples and diatom-inferred phosphorus in recent sedimentation in Swamp and Speckled Trout Lakes were similar. These similarities, coupled with strong analogues for subfossil diatom communities for both lakes within the 89 Minnesota lakes diatom transfer function, indicate that recent and historical diatom-inferred phosphorus reconstructions might be used to help establish reference conditions and nutrient criteria for Grand Portage Reservation lakes when a sampling program is designed to ensure representative phosphorus concentrations in water samples are comparable to diatom-inferred concentrations

    NLOAD : an interactive, web-based modeling tool for nitrogen management in estuaries

    Get PDF
    Author Posting. © Ecological Society of America, 2007. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17, Supple. (2007): S17–S30, doi:10.1890/05-1460.1.Eutrophication of estuaries is an increasing global concern that requires development of new tools to identify causes, quantify conditions, and propose management options that address this environmental problem. Since eutrophication is often associated with increased inputs of land-derived nitrogen to estuaries, we developed NLOAD, a user-friendly, web-based tool that brings together six different published models that predict nitrogen loading to estuaries and two models that estimate nitrogen concentrations in coastal waters. Here we describe each of the models, demonstrate how NLOAD is designed to function, and then use the models in NLOAD to predict nitrogen loads to Barnegat Bay, New Jersey (USA). The four models that we used to estimate nitrogen loads to Barnegat Bay, when adjusted, all had similar results that matched well with measured values and indicated that Barnegat Bay receives roughly 26 kg N·ha−1·yr−1. Atmospheric deposition was the dominant source of nitrogen to Barnegat Bay, followed by fertilizer nitrogen. Wastewater in Barnegat Bay is diverted to an offshore outfall and contributes no nitrogen to the system. The NLOAD tool has an additional feature that allows managers to assess the effectiveness of a variety of management options to reduce nitrogen loads. We demonstrate this feature of NLOAD through simulations in which fertilizer inputs to the Barnegat Bay watershed are reduced. Even modest cutbacks in the use of fertilizers on agricultural fields and lawns can be shown to reduce the amount of N entering Barnegat Bay.Support for the NLOAD tool came from the Cooperative Institute for Coastal and Estuarine Environmental Technologies (CICEET, CICEET-UNH grants #02-610 and #04-833). Additional funding was received from Environmental Defense

    A 200-year perspective on alternative stable state theory and lake management from a biomanipulated shallow lake

    Get PDF
    Abstract. Multiple stressors to a shallow lake ecosystem have the ability to control the relative stability of alternative states (clear, macrophyte-dominated or turbid, algaldominated). As a consequence, the use of remedial biomanipulations to induce trophic cascades and shift a turbid lake to a clear state is often only a temporary solution. Here we show the instability of short-term manipulations in the shallow Lake Christina (Minnesota, USA) is governed by the long-term state following a regime shift in the lake. During the modern, managed period of the lake, three top-down manipulations (fish kills) were undertaken inducing temporary (5-10 years) unstable clear-water states. Paleoecological remains of diatoms, along with proxies of primary production (total chlorophyll a and total organic carbon accumulation rate) and trophic state (total P) from sediment records clearly show a single regime shift in the lake during the early 1950s; following this shift, the functioning of the lake ecosystem is dominated by a persistent turbid state. We find that multiple stressors contributed to the regime shift. First, the lake began to eutrophy (from agricultural land use and/or increased waterfowl populations), leading to a dramatic increase in primary production. Soon after, the construction of a dam in 1936 effectively doubled the depth of the lake, compounded by increases in regional humidity; this resulted in an increase in planktivorous and benthivorous fish reducing phytoplankton grazers. These factors further conspired to increase the stability of a turbid regime during the modern managed period, such that switches to a clear-water state were inherently unstable and the lake consistently returned to a turbid state. We conclude that while top-down manipulations have had measurable impacts on the lake state, they have not been effective in providing a return to an ecosystem similar to the stable historical period. Our work offers an example of a well-studied ecosystem forced by multiple stressors into a new long-term managed period, where manipulated clearwater states are temporary, managed features

    Barnegat Bay-Little Egg Harbor Estuary : case study of a highly eutrophic coastal bay system

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17 (2007): S3–S16, doi:10.1890/05-0800.1.The Barnegat Bay-Little Egg Harbor Estuary is classified here as a highly eutrophic estuary based on application of NOAA’s National Estuarine Eutrophication Assessment model. Because it is shallow, poorly flushed, and bordered by highly developed watershed areas, the estuary is particularly susceptible to the effects of nutrient loading. Most of this load (~50%) is from surface water inflow, but substantial fractions also originate from atmospheric deposition (~39%), and direct groundwater discharges (~11%). No point source inputs of nutrients exist in the Barnegat Bay watershed. Since 1980, all treated wastewater from the Ocean County Utilities Authority's regional wastewater treatment system has been discharged 1.6 km offshore in the Atlantic Ocean. Eutrophy causes problems in this system, including excessive micro- and macroalgal growth, harmful algal blooms (HABs), altered benthic invertebrate communities, impacted harvestable fisheries, and loss of essential habitat (i.e., seagrass and shellfish beds). Similar problems are evident in other shallow lagoonal estuaries of the Mid-Atlantic and South Atlantic regions. To effectively address nutrient enrichment problems in the Barnegat Bay-Little Egg Harbor Estuary, it is important to determine the nutrient loading levels that produce observable impacts in the system. It is also vital to continually monitor and assess priority indicators of water quality change and estuarine health. In addition, the application of a new generation of innovative models using web-based tools (e.g., NLOAD) will enable researchers and decision-makers to more successfully manage nutrient loads from the watershed. Finally, the implementation of stormwater retrofit projects should have beneficial effects on the system.Financial support of the Barnegat Bay National Estuary Program and Jacques Cousteau National Estuarine Research Reserve is gratefully acknowledged

    Comparative Reproductive Biology of Three Species of Swallows in a Common Environment

    No full text
    Volume: 110Start Page: 233End Page: 24

    Diatom floristic change and lake paleoproduction as evidence of recent eutrophication in shallow lakes of the midwestern USA

    No full text
    Intensive agricultural practices can dramatically change the landscape, thereby increasing the concentrations and rates at which nutrients are delivered to aquatic ecosystems. In the United States, concerns about accelerating rates of lake eutrophication related to increases in nutrient loading require a method of quantifying ecological changes that have occurred since European settlement. Because the application of traditional quantitative total phosphorus transfer functions in paleolimnology has proven difficult in shallow, hypereutrophic lakes, we used several approaches in this study to assess ecosystem changes associated with eutrophication of 32 natural lakes in the state of Iowa, USA. In addition to traditional transfer function methods, we estimated changes in primary productivity from the flux of biogenic silica (BSi) and organic carbon accumulation rates (OC AR). Additionally, we compared pre-disturbance diatom communities to modern diatom communities, i.e. floristic change, using non-metric multi-dimensional scaling and square chord distance. OC AR and BSi fluxes increased over time and were positively correlated with the time period of agricultural intensification in the region (post-1940). Ninety-one percent of the lakes in this study showed evidence for eutrophication based on geochemical proxies, and 88 % of lakes showed major floristic change in the diatom community. Whereas geochemical indicators showed consistent increases in productivity across most lakes, floristic changes reflected more complex interactions between other environmental drivers. The magnitude of floristic change did not directly correlate to nutrient-driven increases in primary production, but was driven by ecological diatom assembly related to lake depth. Transfer functions consistently perform poorly, especially for shallow lakes, and other techniques that combine geochemistry and diatom ecology are recommended for reconstructions of eutrophication
    corecore