13 research outputs found

    Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice

    Get PDF
    The most symmetric molecule, Buckminster fullerene C-60, due to its unique properties, has been intensively studied for various medical and technological advances. Minimally invasive and minimally toxic treatments hold great promise for future applications. With this in mind, this research exploited the physical properties of fullerene molecules for potential therapeutic effects. Pristine fullerenes have peak absorbance in the 380-500 nm range, making them an attractive violet-blue light filter. Since spectral quality of light can affect behavior, this research used resting state functional magnetic resonance imaging (rs fMRI) and behavioral testing to directly evaluate the effects of fullerene-filtered light on brain processing and behavior in mice. The same method was used to study if hydroxyl fullerene water complexes (3HFWC), with or without fullerene-filtered light, modulated brain processing. A month-long, daily exposure to fullerene-filtered light led to decreased activation of the brain area involved in emotional processing (amygdala). Water supplemented with 3HFWC resulted in an activation of brain areas involved in pain modulation and processing (periaqueductal gray), and decreased latency to first reaction when tested with a hot plate. The combination of fullerene-filtered light with 3HFWC in drinking water led to restored sensitivity to a hot plate and activation of brain areas involved in cognitive functions (prelimbic, anterior cingulate and retrosplenial cortex). These results uncovered the potential of fullerene-filtered light to impact emotional processing and modulate pain perception, indicating its further use in stress and pain management

    Fullerene-Filtered Light Spectrum and Fullerenes Modulate Emotional and Pain Processing in Mice

    Get PDF
    The most symmetric molecule, Buckminster fullerene C-60, due to its unique properties, has been intensively studied for various medical and technological advances. Minimally invasive and minimally toxic treatments hold great promise for future applications. With this in mind, this research exploited the physical properties of fullerene molecules for potential therapeutic effects. Pristine fullerenes have peak absorbance in the 380-500 nm range, making them an attractive violet-blue light filter. Since spectral quality of light can affect behavior, this research used resting state functional magnetic resonance imaging (rs fMRI) and behavioral testing to directly evaluate the effects of fullerene-filtered light on brain processing and behavior in mice. The same method was used to study if hydroxyl fullerene water complexes (3HFWC), with or without fullerene-filtered light, modulated brain processing. A month-long, daily exposure to fullerene-filtered light led to decreased activation of the brain area involved in emotional processing (amygdala). Water supplemented with 3HFWC resulted in an activation of brain areas involved in pain modulation and processing (periaqueductal gray), and decreased latency to first reaction when tested with a hot plate. The combination of fullerene-filtered light with 3HFWC in drinking water led to restored sensitivity to a hot plate and activation of brain areas involved in cognitive functions (prelimbic, anterior cingulate and retrosplenial cortex). These results uncovered the potential of fullerene-filtered light to impact emotional processing and modulate pain perception, indicating its further use in stress and pain management

    A gold nanoparticles and hydroxylated fullerene water complex as a new product for cosmetics

    Get PDF
    Three types of gold nanoparticles (AuNPs) were synthesised with a custom-made Ultrasonic Spray Pyrolysis (USP) device, from aqueous solutions of gold (III) chloride (AuCl3) and gold (III) acetate (AuC6H12O6), with an initial concentration of Au 0.5 g/L. AuNPs were collected in suspensions of deionised (D.I.) water with the stabilisers polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), followed by the process of freeze drying the AuNPs to be useful as a new additive for the cream. The standard cream base was used as a matrix for preparation of three types of cream with AuNPs in the same concentration ratios. The third AuNPs cream was prepared with a patented hydroxylated fullerene water complex (3HFWC-W) matrix. To examine the effect of AuNPs as additive in creams, a six-week study of test creams was conducted on 33 volunteers with no dermatological diseases. During the study three main parameters of the skin where measured: Collagen quality, skin moisturisation and the epidermis-dermis function. The results of the study found improvements of collagen quality between 18-24 %, achieved due to the use of AuNPs in standard creams, while the cream with the combination of 3HFWC-W and AuNPs gave significantly higher improvements with a value of 45.7 %. It was also discovered that hydration of the skin (stratum cornum) increased by 6.4-9.6 % in standard creams with AuNPs, and 73.7 % in the 3HFWC/AuNPs' cream. Similar results were measured by the epidermisdermis function, where 24-28 % improvement for standard creams with AuNPs was identified, and 38.4 % for the cream 3HFWC-W/AuNPs

    Balloon Cell Nevus ā€“ Report of Three Cases

    No full text
    The balloon cell nevus is a rare and unusual benign melanocytic lesion characterized histologically by complete or predominant presence of balloon-cell transformed melanocytes. They represent approximately 1.7% of all melanocytic nevi. Three female patients, aged 30, 14 and 7 years, with lesions located on the back and head are included in the presented report. The dermoscopic examination revealed the repetitive dermoscopic features in all three patients: white and yellowish aggregated globules. In conclusion, balloon cell nevi are clinically indistinguishable from the common nevi. Dermoscopy can be useful in their recognition since balloon cell nevi exhibit some distinct dermoscopic features in a form of aggregated white and/or yellow globules

    Physicochemical Properties of Gold Nanoparticles for Skin Care Creams

    Get PDF
    Gold nanoparticles (AuNPs) have now been used in skin care creams for several years, with marketed anti-aging, moisturizing, and regenerative properties. Information on the harmful effects of these nanoparticles is lacking, a concern for the use of AuNPs as cosmetic ingredients. Testing AuNPs without the medium of a cosmetic product is a typical method for obtaining this information, which is mainly dependent on their size, shape, surface charge, and dose. As these properties depend on the surrounding medium, nanoparticles should be characterized in a skin cream without extraction from the creamā€™s complex medium as it may alter their physicochemical properties. The current study compares the sizes, morphology, and surface changes of produced dried AuNPs with a polyvinylpyrrolidone (PVP) stabilizer and AuNPs embedded in a cosmetic cream using a variety of characterization techniques (TEM, SEM, DLS, zeta potential, BET, UVā€“vis). The results show no observable differences in their shapes and sizes (spherical and irregular, average size of 28 nm) while their surface charges changed in the cream, indicating no major modification of their primary sizes, morphology, and the corresponding functional properties. They were present as individually dispersed nanoparticles and as groups or clusters of physically separated primary nanoparticles in both dry form and cream medium, showing suitable stability. Examination of AuNPs in a cosmetic cream is challenging due to the required conditions of various characterization techniques but necessary for obtaining a clear understanding of the AuNPsā€™ properties in cosmetic products as the surrounding medium is a critical factor for determining their beneficial or harmful effects in cosmetic products

    Bednar Tumor ā€“ a Case Report

    No full text
    Bednar tumor is a rare pigmented type of the dermatofibrosarcoma protuberans characterized histologically by the coexistence of two distinct cell populations, including spindle-shaped cells and melanin-containing dendritic cells. We report dermoscopic features of Bednar tumor observed in a 54-year-old female patient. The dermoscopy of Bednar tumor revealed a multicomponent pattern composed of a homogeneous blue-gray pigmentation with shiny white lines, structureless light-brown pigmented areas and a peripheral pigment network. The dermoscopic features observed in the present case are consistent with reported dermoscopic descriptions of Bednar tumor. Although dermoscopy may be suggestive of the diagnosis of Bednar tumor, pathohistological examination remains a gold standard for diagnosis

    Combined Action of Hyper-Harmonized Hydroxylated Fullerene Water Complex and Hyperpolarized Light Leads to Melanoma Cell Reprogramming In Vitro

    No full text
    (1) Background: Their unique structure and electron deficiency have brought fullerenes into the focus of research in many fields, including medicine. The hyper-harmonized hydroxylated fullerene water complex (3HFWC) formulation has solved the limitations of the poor solubility and bioavailability of fullerenes. To achieve better antitumor activity, 3HFWC was combined with short-term irradiation of cells with hyperpolarized light (HPL) generated by the application of a nanophotonic fullerene filter in a Bioptron® device. The benefits of HPL were confirmed in the microcirculation, wound healing and immunological function. (2) Methods: B16, B16-F10 and A375 melanoma cells were exposed to a wide spectrum of 3HFWC doses and to a single short-term HPL irradiation. (3) Results: Apart from the differences in the redox status and level of invasiveness, the effects of the treatments were quite similar. Decreased viability, morphological alteration, signs of melanocytic differentiation and cellular senescence were observed upon the successful internalization of the nanoquantum substance. (4) Conclusions: Overall, 3HFWC/HPL promoted melanoma cell reprogramming toward a normal phenotype

    Melanoma Cell Reprogramming and Awakening of Antitumor Immunity as a Fingerprint of Hyper-Harmonized Hydroxylated Fullerene Water Complex (3HFWC) and Hyperpolarized Light Application <i>In Vivo</i>

    No full text
    In our recent study, we showed that in vitro treatment of melanoma cells with hyperpolarized light (HPL) as well as with the second derivative of fullerene, hyper-harmonized hydroxylated fullerene water complex (3HFWC) reduced viability of cells by decreasing their proliferative capacity and inducing senescence and reprogramming towards a normal, melanocytic phenotype. Therefore, we wanted to determine whether these effects persisted in vivo in the syngeneic mouse melanoma model with a combined treatment of HPL irradiation and 3HFWC per os. Our results demonstrated the potent antitumor effects of 3HFWC nanosubstance assisted by HPL irradiation. These effects were primarily driven by the stimulation of melanoma cell growth arrest, the establishment of a senescent phenotype, and melanocytic differentiation on the one hand, and the awakening of the antitumor immune response on the other. In addition, the combined treatment reduced the protumorigenic activity of immune cells by depleting T regulatory cells, myeloid-derived suppressors, and M2 macrophages. The support of the 3HFWC substance by HPL irradiation may be the axis of the new approach design based on tumor cell reprogramming synchronized with the mobilization of the hostā€™s protective immune response
    corecore