36 research outputs found

    Experimental and ab initio molecular dynamics study of the structure and physical properties of liquid GeTe

    Get PDF
    GeTe is a prototypical phase-change material employed in data storage devices. In this work, the atomic structure of liquid GeTe is studied by x-ray and neutron diffraction in the temperature range from 1197 to 998 K. The dynamic viscosity is measured from 1273 to 953 K, which is 55 K below the solidification point, using an oscillating-cup viscometer. The density of liquid GeTe between 1293 and 973 K is determined by the high-energy γ-ray attenuation method. The experiments are complemented with ab initio molecular dynamics (AIMD) simulations based on density functional theory (DFT). Compatibility of the AIMD-DFT models with the diffraction data is proven by simultaneous fitting of all data sets in the frame of the reverse Monte Carlo simulation technique. It is shown that octahedral order dominates in liquid GeTe, although tetrahedral structures are also present. The viscosity of the equilibrium and weakly undercooled liquid GeTe obeys the Arrhenius law with a small activation energy of the order of 0.3 eV, which is indicative of a highly fragile liquid. The calculated density of states and electronic wave functions point to the existence of a pseudogap and localized electron states within the gap in the equilibrium liquid near the melting point as well as in the undercooled liquid

    Structure, electronic, and vibrational properties of glassy Ga11Ge11Te78: Experimentally constrained density functional study

    Get PDF
    The atomic structure and electronic and vibrational properties of glassy Ga11Ge11Te78 have been studied by combining density functional (DF) simulations with x-ray (XRD) and neutron diffraction (ND), extended x-ray absorption fine structure (EXAFS), and Raman spectroscopies. The final DF structure (540 atoms) was refined using reverse Monte Carlo methods to reproduce the XRD and ND data as well as Ge and Ga K-edge EXAFS spectra, while maintaining a semiconducting band gap and a total energy close to the DF minimum. The local coordination of Ga is tetrahedral, while Ge has twice as many tetrahedral as defective octahedral configurations. The average coordination numbers are Ga, 4.1, Ge, 3.8, and Te, 2.6. The chemical bonding around Ga involves Ga 4s, Ga 4p, Te 5s, and Te 5p orbitals, and the bond strengths show bonding close to covalent, as in Ge. There are fewer Te chains and cavities than in amorphous Te, and a prepeak in the structure factor at 1.0 angstrom(-1) indicates medium-range order of the Ga/Ge network. Density functional calculations show that contributions of Te-Te, Ga-Te, and Ge-Te bonds dominate the experimental Raman spectra in the 110-150 cm(-1) range
    corecore