784 research outputs found

    Line shifts in accretion disks - the case of Fe KĪ±\alpha

    Full text link
    Here we present a short overview and main results of our investigations of several effects which can induce shifts in the broad Fe KĪ±\alpha line emitted from relativistic accretion disks around single and binary supermassive black holes. We used numerical simulations based on ray-tracing method in the Kerr metric to study the role of classical Doppler shift, special relativistic transverse Doppler shift and Doppler beaming, general relativistic gravitational redshift, and perturbations of the disk emissivity in the formation of the observed Fe KĪ±\alpha line profiles. Besides, we also investigated whether the observed line profiles from the binary systems of supermassive black holes could be affected by the Doppler shifts due to dynamics of such systems. The presented results demonstrate that all these effects could have a significant influence on the observed profiles of the broad Fe KĪ±\alpha line emitted from relativistic accretion disks around single and binary supermassive black holes.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Astrophysics and Space Scienc

    Anisotropy of the in-plane angular magnetoresistance of electron-doed Sr1-xLaxCuO2 thin films

    Full text link
    Signatures of antiferromagnetism (AF) in the underdoped Ln2-xCexCuO4 (Ln = Nd, Pr,...) family are observed even for doping levels for which superconductivity exists. We have looked for a similar property in a different electron-doped cuprate family, Sr1-xLaxCuO2, which consists of CuO2 planes separated by Sr/La atoms, and is exempt of the possible influence of magnetic rare earth ions. We report in-plane magnetoresistance measurements in the normal state of underdoped, superconducting, c-axis oriented, epitaxial Sr1-xLaxCuO2 thin films. This probe is sensitive to spin arrangement and we find that the in-plane magnetoresistance, which is negative and does not saturate for T, exhibits an angular dependence when measured upon rotating a magnetic field within the CuO2 planes. The analysis reveals a superposition of fourfold and twofold angular oscillations. Both of these increase in amplitude with increasing field and decreasing and appear below a temperature, which gets higher with decreasing doping levels. Our results demonstrate that these magnetoresistance oscillations, also observed for the Ln2-xCexCuO4 (Ln = Nd, Pr,...) family and attributed to an AF signature, are, without ambiguity, a property of CuO2 planes. Besides, these oscillations vary with doping in an unusual way compared to previous results: fourfold oscillations are essentially present in the more underdoped samples while only twofold oscillations are visible in the less underdoped ones. This intriguing observation appears to be a consequence of spin dilution with increasing doping level.Comment: 25 pages, 6 figure

    The First Spectroscopically Resolved Sub-parsec Orbit of a Supermassive Binary Black Hole

    Get PDF
    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole system in their cores. Here we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically applied for spectroscopic binary stars we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for an eccentric, sub-parsec Keplerian orbit of a 15.9-year period. The flux maximum in the lightcurve correspond to the approaching phase of a secondary component towards the observer. According to the obtained results we speculate that the periodic variations in the observed H{\alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into black hole mass growth process.Comment: 29 pages, 10 figures, published in ApJ, 759, 11

    Variability of the H-beta line profiles as an indicator of orbiting bright spots in accretion disks of quasars: a case study of 3C 390.3

    Full text link
    Here we show that in the case when double peaked emission lines originate from outer parts of accretion disk, their variability could be caused by perturbations in the disk emissivity. In order to test this hypothesis, we introduced a model of disk perturbing region in the form of a single bright spot (or flare) by a modification of the power law disk emissivity in appropriate way. The disk emission was then analyzed using numerical simulations based on ray-tracing method in Kerr metric and the corresponding simulated line profiles were obtained. We applied this model to the observed H-beta line profiles of 3C 390.3 (observed in the period 1995-1999), and estimated the parameters of both, accretion disk and perturbing region. Our results show that two large amplitude outbursts of the H-beta line observed in 3C 390.3 could be explained by successive occurrences of two bright spots on approaching side of the disk. These bright spots are either moving, originating in the inner regions of the disk and spiralling outwards by crossing small distances during the period of several years, or stationary. In both cases, their widths increase with time, indicating that they most likely decay.Comment: 14 pages, 5 figures, 1 table. Accepted for publication in Ap

    Peroxidase, phenolics, and antioxidative capacity of common mullein (verbascum thapsus l.) Grown in a zinc excess

    Get PDF
    Common mullein (Verbascum thapsus L.) is the dominant plant species at a disposal site polluted with metal from the hydrometallurgical jarosite zinc production process. Seeds collected at the site were germinated and plants were grown hydroponically under controlled conditions in a excess of Zn. Induction of total soluble POD activity in the root occurred at 1, 5, and 10 mM Zn, indicating Zn accumulation within the root. Accumulation of Zn in leaves was not accompanied by changes in POD activity, but resulted in gradual increase of total antioxidative capacity, which could be partly attributed to accumulation of soluble phenolics. The role of the phenolics/POD system in defense of V thapsus against zinc is discussed

    Possible observational signatures of SMBHBs in their Fe KĪ±\alpha line profiles

    Get PDF
    Here we study the potential observational signatures of supermassive black hole binaries (SMBHBs) in the Fe KĪ±\alpha line profiles emitted from the accretion disks around their components. We simulated the Fe KĪ±\alpha line emission from the relativistic accretion disks using ray tracing method in Kerr metric. The obtained profiles from the SMBHBs are then compared with those in the case of the single supermassive black holes (SMBHs). We considered two models of the SMBHBs: a model when the secondary SMBH is embedded in the accretion disk around the primary, causing an empty gap in the disk, and a model with clearly separated components, where the accretion disks around both primary and secondary give a significant contribution to the composite Fe KĪ±\alpha line emission of a such SMBHB. The obtained results showed that both models of SMBHBs can leave imprints in the form of ripples in the cores of the emitted Fe KĪ±\alpha line profiles, which may look like an absorption component in the line profile. However, in the case of the composite line profiles emitted from two accretion disks, these ripples could have much higher amplitudes and strongly depend on orbital phase of the system, while for those emitted from a disk with an empty gap, the corresponding ripples mostly have lower amplitudes and do not vary significantly with orbital phase. The present day X-ray telescopes are not able to detect such signatures in the observed X-ray spectra of SMBHBs. However this will be possible with the next generation of X-ray observatories, which will also enable application of such effects as a tool for studying the properties of these objects.Comment: 16 pages, 5 figures, 1 table. Presented as invited talk at the 12th Serbian Conference on Spectral Line Shapes in Astrophysics (http://www.scslsa.matf.bg.ac.rs/press12/day5/Jovanovic.pdf) and accepted for publication in "Contributions of the Astronomical Observatory Skalnat\'e Pleso (CAOSP)

    Examination of weld defects by computed tomography

    Get PDF
    Defects in metal arc gas (MAG) welds made in S235JR low carbon steel of 6 mm thickness were examined. A sample containing lack of fusion (LOF) and pores was examined by computed tomography ā€“ CT. The computed tomography examination was performed in order to define LOF size and position as well as dimensions and distribution of accompanying pores in the weld metal

    RXJ 0921+4529: a binary quasar or gravitational lens?

    Full text link
    We report the new spectroscopic observations of the gravitational lens RXJ 021+4529 with the multi-mode focal reducer SCORPIO of the SAO RAS 6-m telescope. The new spectral observations were compared with the previously observed spectra of components A and B of RXJ 0921+4529, i.e. the same components observed in different epochs. We found a significant difference in the spectrum between the components that cannot be explained with microlensing and/or spectral variation. We conclude that RXJ 0921+4529 is a binary quasar system, where redshifts of quasars A and B are 1.6535 +/- 0.0005 and 1.6625 +/- 0.0015, respectively.Comment: 6 pages, 5 figures, accepted for publication in The Astrophysical Journal Letter

    Ispitivanje greŔaka zavara kompjutorskom tomografijom

    Get PDF
    Defects in metal arc gas (MAG) welds made in S235JR low carbon steel of 6 mm thickness were examined. A sample containing lack of fusion (LOF) and pores was examined by computed tomography ā€“ CT. The computed tomography examination was performed in order to define LOF size and position as well as dimensions and distribution of accompanying pores in the weld metal.Ispitivane su greÅ”ke u zavarenom spoju niskougljičnog čelika S235JR debljine 6 mm zavarenog MAG postupkom. Uzorak koji sadrži greÅ”ke naljepljivanja i pore je ispitivan kompjutorskom tomografijom - KT. Programskom analizom tomografa je određena veličina i pozicija greÅ”aka naljepljivanja kao i dimenzije i raspored pratećih pora u zavarenom spoju
    • ā€¦
    corecore