8 research outputs found

    CRISPR-TSKO : a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis

    Get PDF
    Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function

    GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation

    Get PDF
    During lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process. Through a suppressor screen, we found that MITOGEN-ACTIVATED PROTEIN KINASE6 is a downstream regulator of the GLV pathway. Our data indicate that GLV6 and GLV10 act as inhibitors of asymmetric cell divisions and signal through RGF1 INSENSITIVE receptors and MITOGEN-ACTIVATED PROTEIN KINASE6 to restrict the number of initial asymmetric cell divisions that take place during lateral root initiation. The authors demonstrate the negative role of GOLVEN peptides during lateral root initiation in Arabidopsis, at the very early stage of the first asymmetric cell division of lateral root founder cells, and identify the receptors for these peptides

    Peptide-receptor signaling controls lateral root development

    No full text
    Lateral root development progresses through different steps with, the peptides and receptors involved in each of these steps triggering downstream mechanisms upon peptide perception

    The phloem intercalated with xylem-correlated 3 receptor-like kinase constitutively interacts with brassinosteroid insensitive 1-associated receptor kinase 1 and is involved in vascular development in Arabidopsis

    No full text
    Leucine-rich repeat receptor-like kinases (LRR-RLKs) play fundamental roles in cell-to-cell and plant-environment communication. LRR-RLKs can function as receptors perceiving endogenous or external ligands, or as coreceptors, which stabilize the complex, and enhance transduction of the intracellular signal. The LRR-RLK BAK1 is a coreceptor for different developmental and immunity pathways. In this article, we identified PXY-CORRELATED 3 (PXC3) as a BAK1-interacting LRR-RLK, which was previously reported to be transcribed in vascular tissues co-expressed with PHLOEM INTERCALATED WITH XYLEM (PXY), the receptor of the TDIF/CLE41 peptide. Characterization of pxc3 loss-of-function mutants revealed reduced hypocotyl stele width and vascular cells compared to wild type, indicating that PXC3 plays a role in the vascular development in Arabidopsis. Furthermore, our data suggest that PXC3 might function as a positive regulator of the CLE41/TDIF-TDR/PXY signaling pathway

    Dynamic GOLVEN-ROOT GROWTH FACTOR 1 INSENSITIVE signaling in the root cap mediates root gravitropism

    No full text
    Throughout exploration of the soil, roots interact with their environment and adapt to different conditions. Directional root growth is guided by asymmetric molecular patterns but how these become established or are dynamically regulated is poorly understood. Asymmetric gradients of the phytohormone auxin are established during root gravitropism, mainly through directional transport mediated by polarized auxin transporters. Upon gravistimulation, PIN-FORMED2 (PIN2) is differentially distributed and accumulates at the lower root side to facilitate asymmetric auxin transport up to the elongation zone where it inhibits cell elongation. GOLVEN (GLV) peptides function in gravitropism by affecting PIN2 abundance in epidermal cells. In addition, GLV signaling through ROOT GROWTH FACTOR 1 INSENSITIVE (RGI) receptors regulates root apical meristem maintenance. Here, we show that GLV-RGI signaling in these two processes in Arabidopsis (Arabidopsis thaliana) can be mapped to different cells in the root tip and that, in the case of gravitropism, it operates mainly in the lateral root cap (LRC) to maintain PIN2 levels at the plasma membrane. Furthermore, we found that GLV signaling upregulates the phosphorylation level of PIN2 in an RGI-dependent manner. In addition, we demonstrated that the RGI5 receptor is asymmetrically distributed in the LRC and accumulates in the lower side of the LRC after gravistimulation. Asymmetric GLV-RGI signaling in the root cap likely accounts for differential PIN2 abundance at the plasma membrane to temporarily support auxin transport up to the elongation zone thereby representing an additional level of control on the asymmetrical auxin flux to mediate differential growth of the root

    Two phylogenetically unrelated peptide‐receptor modules jointly regulate lateral root initiation via a partially shared signaling pathway in Arabidopsis thaliana

    No full text
    Peptide-receptor signaling is an important system for intercellular communication regulating many developmental processes. A single process can be controlled by several distinct signaling peptides. However, since peptide-receptor modules are usually studied separately, their mechanistic interactions remain largely unexplored. Two phylogenetically unrelated peptide-receptor modules, GLV6/GLV10-RGI and TOLS2/PIP2-RLK7, independently described as inhibitors of lateral root initiation, show striking similarities between their expression patterns and gain- and loss-of-function phenotypes, suggesting a common function during lateral root spacing and initiation. The GLV6/GLV10-RGI and TOLS2/PIP2-RLK7 modules trigger similar transcriptional changes, likely in part via WRKY transcription factors. Their overlapping set of response genes includes PUCHI and PLT5, both required for the effect of GLV6/10, as well as TOLS2, on lateral root initiation. Furthermore, both modules require the activity of MPK6 and can independently trigger MPK3/MPK6 phosphorylation. The GLV6/10 and TOLS2/PIP2 signaling pathways seem to converge in the activation of MPK3/MPK6, leading to the induction of a similar transcriptional response in the same target cells, thereby regulating lateral root initiation through a (partially) common mechanism. Convergence of signaling pathways downstream of phylogenetically unrelated peptide-receptor modules adds an additional, and hitherto unrecognized, level of complexity to intercellular communication networks in plants

    GOLVEN peptides regulate lateral root spacing as part of a negative feedback loop on the establishment of auxin maxima

    No full text
    Lateral root initiation requires the accumulation of auxin in lateral root founder cells, yielding a local auxin maximum. The positioning of auxin maxima along the primary root determines the density and spacing of lateral roots. The GOLVEN6 (GLV6) and GLV10 signaling peptides and their receptors have been established as regulators of lateral root spacing via their inhibitory effect on lateral root initiation in Arabidopsis. However, it remained unclear how these GLV peptides interfere with auxin signaling or homeostasis. Here, we show that GLV6/10 signaling regulates the expression of a subset of auxin response genes, downstream of the canonical auxin signaling pathway, while simultaneously inhibiting the establishment of auxin maxima within xylem-pole pericycle cells that neighbor lateral root initiation sites. We present genetic evidence that this inhibitory effect relies on the activity of the PIN3 and PIN7 auxin export proteins. Furthermore, GLV6/10 peptide signaling was found to enhance PIN7 abundance in the plasma membranes of xylem-pole pericycle cells, which likely stimulates auxin efflux from these cells. Based on these findings, we propose a model in which the GLV6/10 signaling pathway serves as a negative feedback mechanism that contributes to the robust patterning of auxin maxima along the primary root
    corecore