123 research outputs found

    Reading Single DNA with DNA Polymerase Followed by Atomic Force Microscopy

    Get PDF
    The importance of DNA sequencing in the life sciences and personalized medicine is continually increasing. Single-molecule sequencing methods have been developed to analyze DNA directly without the need for amplification. Here, we present a new approach to sequencing single DNA molecules using atomic force microscopy (AFM). In our approach, four surface conjugated nucleotides were examined sequentially with a DNA polymerase immobilized AFM tip. By observing the specific rupture events upon examination of a matching nucleotide, we could determine the template base bound in the polymerase's active site. The subsequent incorporation of the complementary base in solution enabled the next base to be read. Additionally, we observed that the DNA polymerase could incorporate the surface-conjugated dGTP when the applied force was controlled by employing the force-clamp mode.X1114Ysciescopu

    Replenishment of microRNA-188-5p restores the synaptic and cognitive deficits in 5XFAD Mouse Model of Alzheimer’s Disease

    Get PDF
    MicroRNAs have emerged as key factors in development, neurogenesis and synaptic functions in the central nervous system. In the present study, we investigated a pathophysiological significance of microRNA-188-5p (miR-188-5p) in Alzheimer’s disease (AD). We found that oligomeric Aβ(1-42) treatment diminished miR-188-5p expression in primary hippocampal neuron cultures and that miR-188-5p rescued the Aβ(1-42)-mediated synapse elimination and synaptic dysfunctions. Moreover, the impairments in cognitive function and synaptic transmission observed in 7-month-old five familial AD (5XFAD) transgenic mice, were ameliorated via viral-mediated expression of miR-188-5p. miR-188-5p expression was down-regulated in the brain tissues from AD patients and 5XFAD mice. The addition of miR-188-5p rescued the reduction in dendritic spine density in the primary hippocampal neurons treated with oligomeric Aβ(1-42) and cultured from 5XFAD mice. The reduction in the frequency of mEPSCs was also restored by addition of miR-188-5p. The impairments in basal fEPSPs and cognition observed in 7-month-old 5XFAD mice were ameliorated via the viral-mediated expression of miR-188-5p in the hippocampus. Furthermore, we found that miR-188 expression is CREB-dependent. Taken together, our results suggest that dysregulation of miR-188-5p expression contributes to the pathogenesis of AD by inducing synaptic dysfunction and cognitive deficits associated with Aβ-mediated pathophysiology in the disease

    Dopamine Regulation of Amygdala Inhibitory Circuits for Expression of Learned Fear.

    Get PDF
    GABAergic signaling in the amygdala controls learned fear, and its dysfunction potentially contributes to posttraumatic stress disorder (PTSD). We find that sub-threshold fear conditioning leads to dopamine receptor D4-dependent long-term depression (LTD) of glutamatergic excitatory synapses by increasing inhibitory inputs onto neurons of the dorsal intercalated cell mass (ITC) in the amygdala. Pharmacological, genetic, and optogenetic manipulations of the amygdala regions centered on the dorsal ITC reveal that this LTD limits less salient experiences from forming persistent memories. In further support of the idea that LTD has preventive and discriminative roles, we find that LTD at the dorsal ITC is impaired in mice exhibiting PTSD-like behaviors. These findings reveal a novel role of inhibitory circuits in the amygdala, which serves to dampen and restrict the level of fear expression. This mechanism is interfered with by stimuli that give rise to PTSD and may also be recruited for fear-related psychiatric diseases.1110Ysciescopu

    Biochemical Markers as Predictors of In-Hospital Mortality in Patients with Severe Trauma: A Retrospective Cohort Study

    Get PDF
    Background Initial evaluation of injury severity in trauma patients is an important and challenging task. We aimed to assess whether easily measurable biochemical parameters (hemoglobin, pH, and prothrombin time/international normalized ratio [PT/INR]) can predict in-hospital mortality in patients with severe trauma. Methods This retrospective study involved review of the medical records of 315 patients with severe trauma and an injury severity score >15 who were managed at Gyeongsang National University Hospital between January 2005 and December 2015. We extracted the following data: in-hospital mortality, injury severity score, and initial hemoglobin level, pH, and PT/INR. The predictive values of these variables were compared using receiver operation characteristic curves. Results Of the 315 patients, 72 (22.9%) died. The in-hospital mortality rates of patients with hemoglobin levels <8.4 g/dl and ≥8.4 g/dl were 49.8% and 9.9%, respectively (P < 0.001). At a cutoff hemoglobin level of 8.4 g/dl, the sensitivity and specificity values for mortality were 81.9% and 86.4%, respectively. At a pH cutoff of 7.25, the sensitivity and specificity values for mortality were 66.7% and 77.8%, respectively; 66.7% of patients with a pH <7.25 died versus 22.2% with a pH ≥7.25 (P < 0.001). The in-hospital mortality rates for patients with PT/INR values ≥1.4 and <1.4 were 37.5% and 16%, respectively (P < 0.001; sensitivity, 37.5%; specificity, 84%). Conclusions Using the suggested cutoff values, hemoglobin level, pH, and PT/INR can simply and easily be used to predict in-hospital mortality in patients with severe trauma

    DISC1 Modulates Neuronal Stress Responses by Gate-Keeping ER-Mitochondria Ca2+ Transfer through the MAM

    Get PDF
    A wide range of Ca2+-mediated functions are enabled by the dynamic properties of Ca2+, all of which are dependent on the endoplasmic reticulum (ER) and mitochondria. Disrupted-in-schizophrenia 1 (DISC1) is a scaffold protein that is involved in the function of intracellular organelles and is linked to cognitive and emotional deficits. Here, we demonstrate that DISC1 localizes to the mitochondria-associated ER membrane (MAM). At the MAM, DISC1 interacts with IP3R1 and downregulates its ligand binding, modulating ER-mitochondria Ca2+ transfer through the MAM. The disrupted regulation of Ca2+ transfer caused by DISC1 dysfunction leads to abnormal Ca2+ accumulation in mitochondria following oxidative stress, which impairs mitochondrial functions. DISC1 dysfunction alters corticosterone-induced mitochondrial Ca2+ accumulation in an oxidative stress-dependent manner. Together, these findings link stress-associated neural stimuli with intracellular ER-mitochondria Ca2+ crosstalk via DISC1, providing mechanistic insight into how environmental risk factors can be interpreted by intracellular pathways under the control of genetic components in neurons.114sciescopu

    Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo

    Get PDF
    Background: Exosomes, small extracellular vesicles of endosomal origin, have been suggested to be involved in both the metabolism and aggregation of Alzheimer’s disease (AD)-associated amyloid β-protein (Aβ). Despite their ubiquitous presence and the inclusion of components which can potentially interact with Aβ, the role of exosomes in regulating synaptic dysfunction induced by Aβ has not been explored. Results: We here provide in vivo evidence that exosomes derived from N2a cells or human cerebrospinal fluid can abrogate the synaptic-plasticity-disrupting activity of both synthetic and AD brain-derived Aβ. Mechanistically, this effect involves sequestration of synaptotoxic Aβ assemblies by exosomal surface proteins such as PrPC rather than Aβ proteolysis. Conclusions: These data suggest that exosomes can counteract the inhibitory action of Aβ, which contributes to perpetual capability for synaptic plasticity

    Effects of Trap Charges in Spacer Region on Retention Variation in 3-D NAND Memory Cells

    No full text
    1
    corecore