33 research outputs found

    Facile Synthesis of Copper Oxide Nanoparticles via Electrospinning

    Get PDF
    A novel approach for synthesizing copper oxide (CuO) nanoparticles (NPs) through electrospinning is reported. The approach is based on producing rough and discontinuous electrospun nanofibers from a precursor based on copper acetate salt and polyvinyl alcohol (PVA) polymer. Selectively removing the polymeric phase from the fibers produced highly rough CuO nanofibers, which were composed of NPs that are weakly held together in a one-dimensional (1D) manner. Sonication in a suitable liquid under controlled conditions completely disintegrated the nanofibers into NPs, resulting in the formation of uniform CuO NPs suspension. Aberration corrected high resolution transmission electron microscope (HRTEM) showed that the obtained NPs are highly crystalline and nearly sphere-like with a diameter of 30 to 70 nm. Thus, electrospinning, which is a low cost and industrially scalable technique, can also be employed for economic and large scale synthesis of NPs

    Magnetoelectric coupling in multiferroic CFO/BCTSn core shell nanofibers elaborated by co-axial electrospinning method

    Full text link
    Multiferroic CoFe2O4-Ba0.95Ca0.05Ti0.89Sn0.11O3 core-shell nanofibers (CFO@BCTSn NFs) were synthesized by a sol-gel co-axial electrospinning technique. The scanning electron microscope and transmission electron microscope were used to check nanofibers' core-shell structure/configuration. X-ray diffraction and a high-resolution transmission electron microscope were used to confirm the spinel structure of CFO and the perovskite structure of BCTSn. The magnetic character of the resultant CFO@BCTSn NFs was determined by SQUID magnetometry. The piezoelectricity was verified using piezo-response force microscopy, which revealed an entirely covered ferroelectric shell outline, in accordance with SEM and TEM observations. The magnetoelectric (ME) coefficient was measured as a function of the applied external DC magnetic field. The maximum ME coefficient obtained for the CFO@BCTSn NFs was 346 mV cm-1 Oe-1. The high magnetoelectric coupling suggests that CFO@BCTSn NFs could be a promising candidate for magnetic field sensor and magnetoelectric device applications

    Toward the use of CVD-grown MoS2 nanosheets as field-emission source

    Get PDF
    Densely populated edge-terminated vertically aligned two-dimensional MoS2 nanosheets (NSs) with thicknesses ranging from 5 to 20 nm were directly synthesized on Mo films deposited on SiO2 by sulfurization. The quality of the obtained NSs was analyzed by scanning electron and transmission electron microscopy, and Raman and X-ray photoelectron spectroscopy. The as-grown NSs were then successfully transferred to the substrates using a wet chemical etching method. The transferred NSs sample showed excellent field-emission properties. A low turn-on field of 3.1 V/μm at a current density of 10 µA/cm2 was measured. The low turn-on field is attributed to the morphology of the NSs exhibiting vertically aligned sheets of MoS2 with sharp and exposed edges. Our findings show that the fabricated MoS2 NSs could have a great potential as robust high-performance electron-emitter material for various applications such as microelectronics and nanoelectronics, flat-panel displays and electron-microscopy emitter tips

    Dislocation/precipitate interactions in IN100 at 650°C

    No full text
    The influence of γ\u27 size on critical resolved shear stress in alloy IN100 at 650. °C has been examined by considering dislocation/precipitate interactions involving particle shearing and Orowan by-passing mechanisms. To achieve this, heat treatment procedures were carried out on smooth specimens to produce materials with variations in secondary and tertiary γ\u27 size, while maintaining their respective volume fractions. These specimens were subjected to strain-controlled fully reversed cyclic loading at 650. °C. Thin foils extracted from these specimens, post-testing, were examined by transmission electron microscopy to identify the nature of the precipitate/dislocation interactions during plastic deformation. Results indicated the presence of shearing and Orowan by-passing mechanisms. These observations have been used as a basis to calculate the critical resolved shear stress as a sum of components contributed by solid solution and by γ\u27 particles being sheared and looped. In this analysis, a critical particle size defining the shearing/looping transition has been determined and this has been used to calculate the relative volume fraction and size of particles contributing to the critical resolved shear stress. These analytical results have been compared with those experimentally obtained at 650. °C using smooth specimens with different precipitate sizes. © 2013 Elsevier B.V

    The Role of III-V Substrate Roughness and Deoxidation Induced by Digital Etch in Achieving Low Resistance Metal Contacts

    No full text
    To achieve low contact resistance between metal and III-V material, transmission-line-model (TLM) structures of molybdenum (Mo) were fabricated on indium phosphide (InP) substrate on the top of an indium gallium arsenide (InGaAs) layer grown by molecular beam epitaxy. The contact layer was prepared using a digital etch procedure before metal deposition. The contact resistivity was found to decrease significantly with the cleaning process. High Resolution Transmission & Scanning Electron Microscopy (HRTEM & HRSTEM) investigations revealed that the surface roughness of treated samples was increased. Further analysis of the metal-semiconductor interface using Energy Electron Loss Spectroscopy (EELS) showed that the amount of oxides (InxOy, GaxOy or AsxOy) was significantly decreased for the etched samples. These results suggest that the low contact resistance obtained after digital etching is attributed to the combined effects of the induced surface roughness and oxides removal during the digital etch process

    Long-term aging of CVD grown 2D-MoS2 nanosheets in ambient environment

    No full text
    International audienceA chemically vapor deposited MoS2 nanosheets (NSs) is aged in the laboratory at ambient and at 40% average humidity for similar to 36 months. Nanorods of few microns in length and few nanometers in diameter are found to grow from the MoS2 seeds. They have been growing as a result of the chemical reaction between the MoS2 NSs and ambient O-2 and moisture, they exhibit an amorphous phase structure in the stoichiometric form of MoO3. Density functional theory simulations further reveal the role of H2O and O-2 in the transformation of the MoS2 NSs. The adsorption energy of O-2 molecules on the MoS2 sites is E-ad = -1.09 eV as compared to lowest absolute E-ad = -0.10 eV of H2O indicating the favorable adsorption of O-2 and subsequent Mo oxidation. This study provides valuable insight into the aging phenomenon of MoS2 exposed to O-2 and moisture which might limit their application

    Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting

    No full text
    International audiencePlasmonic nanostructures have played a key role in extending the activity of photocatalysts to the visible light spectrum, preventing the electron-hole combination and providing with hot electrons to the photocatalysts, a crucial step towards efficient broadband photocatalysis. One plasmonic photocatalyst, Au/TiO2, is of a particular interest because it combines chemical stability, suitable electronic structure, and photoactivity for a wide range of catalytic reactions such as water splitting. In this review, we describe key mechanisms involving plasmonics to enhance photocatalytic properties leading to efficient water splitting such as production and transport of hot electrons through advanced analytical techniques used to probe the photoactivity of plasmonics in engineered Au/TiO2 devices. This work also discusses the emerging strategies to better design plasmonic photocatalysts and understand the underlying mechanisms behind the enhanced photoactivity of plasmon-assisted catalysts

    Sub-10 nm spatial resolution for electrical properties measurements using bimodal excitation in electric force microscopy

    No full text
    International audienceWe demonstrate that under ambient and humidity-controlled conditions, operation of bimodal excitation single-scan electric force microscopy with no electrical feedback loop increases the spatial resolution of surface electrical property measurements down to the 5 nm limit. This technical improvement is featured on epitaxial graphene layers on SiC, which is used as a model sample. The experimental conditions developed to achieve such resolution are discussed and linked to the stable imaging achieved using the proposed method. The application of the herein reported method is achieved without the need to apply DC bias voltages, which benefits specimens that are highly sensitive to polarization. Besides, it allows the simultaneous parallel acquisition of surface electrical properties (such as contact potential difference) at the same scanning rate as in amplitude modulation atomic force microscopy (AFM) topography measurements. This makes it attractive for applications in high scanning speed AFM experiments in various fields for material screening and metrology of semiconductor systems
    corecore