9 research outputs found

    Work fluctuation theorems for harmonic oscillators

    Get PDF
    The work fluctuations of an oscillator in contact with a thermostat and driven out of equilibrium by an external force are studied experimentally and theoretically within the context of Fluctuation Theorems (FTs). The oscillator dynamics is modeled by a second order Langevin equation. Both the transient and stationary state fluctuation theorems hold and the finite time corrections are very different from those of a first order Langevin equation. The periodic forcing of the oscillator is also studied; it presents new and unexpected short time convergences. Analytical expressions are given in all cases

    Fluctuation theorems for harmonic oscillators

    Get PDF
    We study experimentally the thermal fluctuations of energy input and dissipation in a harmonic oscillator driven out of equilibrium, and search for Fluctuation Relations. We study transient evolution from the equilibrium state, together with non equilibrium steady states. Fluctuations Relations are obtained experimentally for both the work and the heat, for the stationary and transient evolutions. A Stationary State Fluctuation Theorem is verified for the two time prescriptions of the torque. But a Transient Fluctuation Theorem is satisfied for the work given to the system but not for the heat dissipated by the system in the case of linear forcing. Experimental observations on the statistical and dynamical properties of the fluctuation of the angle, we derive analytical expressions for the probability density function of the work and the heat. We obtain for the first time an analytic expression of the probability density function of the heat. Agreement between experiments and our modeling is excellent

    Fluctuations of the total entropy production in stochastic systems

    Get PDF
    Fluctuations of the excess heat in an out of equilibrium steady state are experimentally investigated in two stochastic systems : an electric circuit with an imposed mean current and a harmonic oscillator driven out of equilibrium by a periodic torque. In these two linear systems, we study excess heat that represents the difference between the dissipated heat out of equilibrium and the dissipated heat at equilibrium. Fluctuation theorem holds for the excess heat in the two experimental systems for all observation times and for all fluctuation magnitudes.Comment: 6

    Fluctuation theorems for stochastic dynamics

    Full text link
    Fluctuation theorems make use of time reversal to make predictions about entropy production in many-body systems far from thermal equilibrium. Here we review the wide variety of distinct, but interconnected, relations that have been derived and investigated theoretically and experimentally. Significantly, we demonstrate, in the context of Markovian stochastic dynamics, how these different fluctuation theorems arise from a simple fundamental time-reversal symmetry of a certain class of observables. Appealing to the notion of Gibbs entropy allows for a microscopic definition of entropy production in terms of these observables. We work with the master equation approach, which leads to a mathematically straightforward proof and provides direct insight into the probabilistic meaning of the quantities involved. Finally, we point to some experiments that elucidate the practical significance of fluctuation relations.Comment: 48 pages, 2 figures. v2: minor changes for consistency with published versio
    corecore