70 research outputs found

    Caractérisation physico-chimique des eaux usées d’abattoir en vue de la mise en oeuvre d’un traitement adéquat : cas de Kénitra au Maroc

    Get PDF
    Notre objectif principal est de caractériser les eaux usées d’abattoir municipal de la ville de Kénitra (Maroc) et de recommander un traitement adéquat permettant leurs réutilisations, réduisant ainsi les nuisances que subit le milieu récepteur (Oued Sebou) et de remédier aussi à la perte de cette source hydrique en matières valorisables. La caractérisation physico-chimique des eaux usées brutes a révélé que ce rejet liquide est très chargé en matière organique en terme de DCO (Moy. = 219,52 mg/L ±51,07), en DBO5 (Moy. = 181,34 mg/L±30,04), en MES (Moy. = 482 mg/L ±222,7) et en matière minérale exprimée en terme de Chlorures (Moy. = 237 mg/L ±109,6), en Conductivité électrique (Moy. = 1360,5 μs/cm ±1120,8) et en Alcalinité exprimée en CaCO3 (Moy. = 201 mg/L ±74,2) avec un pH de 7,5 (±0,8). Les teneurs moyennes en Nitrates et en Orthophosphates respectivement de l'ordre de 1,74 mg/L (±2,7) et 0,08 mg/L (±0,1). Malgré que ces eaux usées présentent une charge organique élevée (rapports DBO5/DCO = 0,83 et MES/DBO5 = 2,66), elles présentent une biodégradabilité satisfaisante. L’examen de rapport DCO/DBO5 = 1,21 souligne bien le caractère biodégradable des eaux usées de l'abattoir municipal de Kénitra auxquelles un traitement biologique paraît tout à fait convenable. Cependant, il faut tenir compte les eaux usées domestiques mélangées avec les effluents de l'abattoir. Il existe une corrélation hautement significative entre la DCO et la DBO5 de nos échantillons d’eaux usées (R2= 0,93 et y = 1,2689x + 23,814). Par ailleurs, la corrélation établie entre l’oxygène dissous et la DBO5 montre un R2= 0,75 (y = 0,0057x + 0,7964).Mots-clés : eaux usées, abattoir, paramètres physico-chimiques, traitement, Kénitra

    Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL

    Get PDF
    The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.The developed reconstruction method can successfully identify the orientations of coherent X-ray diffraction patterns of an aerosol nanoparticle. ? 2017 Miki Nakano et al.112Ysciescopu

    Towards single particle imaging of human chromosomes at SACLA

    Get PDF
    Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI's big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the 'diffract before destruction' theme, destruction being assured from the high x-ray doses used. This article reports our collaboration's first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images

    Towards single particle imaging of human chromosomes at SACLA

    Get PDF
    Single particle imaging (SPI) is one of the front-page opportunities which were used to motivate the construction of the first x-ray free electron lasers (XFELs). SPI's big advantage is that it avoids radiation damage to biological samples because the diffraction takes place in femtosecond single shots before any atomic motion can take place in the sample, hence before the onset of radiation damage. This is the 'diffract before destruction' theme, destruction being assured from the high x-ray doses used. This article reports our collaboration's first attempt at SPI using the SACLA XFEL facility in June 2015. The report is limited to experience with the instrumentation and examples of data because we have not yet had time to invert them to images.112Ysciescopu

    Atomic resolution structure of serine protease proteinase K at ambient temperature

    Get PDF
    Atomic resolution structures (beyond 1.20 ?) at ambient temperature, which is usually hampered by the radiation damage in synchrotron X-ray crystallography (SRX), will add to our understanding of the structure-function relationships of enzymes. Serial femtosecond crystallography (SFX) has attracted surging interest by providing a route to bypass such challenges. Yet the progress on atomic resolution analysis with SFX has been rather slow. In this report, we describe the 1.20 ? resolution structure of proteinase K using 13 keV photon energy. Hydrogen atoms, water molecules, and a number of alternative side-chain conformations have been resolved. The increase in the value of B-factor in SFX suggests that the residues and water molecules adjacent to active sites were flexible and exhibited dynamic motions at specific substrate-recognition sites. ? 2017 The Author(s).114Ysciescopu

    Hydroxyethyl cellulose matrix applied to serial crystallography

    Get PDF
    Serial femtosecond crystallography (SFX) allows structures of proteins to be determined at room temperature with minimal radiation damage. A highly viscous matrix acts as a crystal carrier for serial sample loading at a low flow rate that enables the determination of the structure, while requiring consumption of less than 1 mg of the sample. However, a reliable and versatile carrier matrix for a wide variety of protein samples is still elusive. Here we introduce a hydroxyethyl cellulose-matrix carrier, to determine the structure of three proteins. The de novo structure determination of proteinase K from single-wavelength anomalous diffraction (SAD) by utilizing the anomalous signal of the praseodymium atom was demonstrated using 3,000 diffraction images. ? 2017 The Author(s).113Ysciescopu

    Single-shot 3D coherent diffractive imaging of core-shell nanoparticles with elemental specificity

    Get PDF
    We report 3D coherent diffractive imaging (CDI) of Au/Pd core-shell nanoparticles with 6.1 nm spatial resolution with elemental specificity. We measured single-shot diffraction patterns of the nanoparticles using intense x-ray free electron laser pulses. By exploiting the curvature of the Ewald sphere and the symmetry of the nanoparticle, we reconstructed the 3D electron density of 34 core-shell structures from these diffraction patterns. To extract 3D structural information beyond the diffraction signal, we implemented a super-resolution technique by taking advantage of CDI's quantitative reconstruction capabilities. We used high-resolution model fitting to determine the Au core size and the Pd shell thickness to be 65.0 +/- 1.0 nm and 4.0 +/- 0.5 nm, respectively. We also identified the 3D elemental distribution inside the nanoparticles with an accuracy of 3%. To further examine the model fitting procedure, we simulated noisy diffraction patterns from a Au/Pd core-shell model and a solid Au model and confirmed the validity of the method. We anticipate this super-resolution CDI method can be generally used for quantitative 3D imaging of symmetrical nanostructures with elemental specificity.111Ysciescopu

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging

    Get PDF
    The eukaryotic genome is organized within cells as chromatin. For proper information output, higher-order chromatin structures can be regulated dynamically. How such structures form and behave in various cellular processes remains unclear. Here, by combining super-resolution imaging (photoactivated localization microscopy [PALM]) and single-nucleosome tracking, we developed a nuclear imaging system to visualize the higher-order structures along with their dynamics in live mammalian cells. We demonstrated that nucleosomes form compact domains with a peak diameter of ∼160 nm and move coherently in live cells. The heterochromatin-rich regions showed more domains and less movement. With cell differentiation, the domains became more apparent, with reduced dynamics. Furthermore, various perturbation experiments indicated that they are organized by a combination of factors, including cohesin and nucleosome-nucleosome interactions. Notably, we observed the domains during mitosis, suggesting that they act as building blocks of chromosomes and may serve as information units throughout the cell cycle

    Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    Get PDF
    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-angstrom resolution.open111011sciescopu
    corecore