219 research outputs found

    The potential for manganese in the UK

    Get PDF
    Elemental manganese is a silver to grey metal, which only occurs in nature as a compound with other elements (Holmes, 1994). Manganese is a ferrous metal that has chemical properties important for desulfurizing, deoxidising, and alloying. Accordingly, its main use globally and in the UK is in steel production, in which it is used as a purifying agent during iron-ore refining (removing oxygen and sulfur), and as an essential alloy that helps convert iron into steel (Cannon et al. 2017). Increasing amounts of manganese are now used in the emerging battery market

    Development of a correlated Fe‐Mn Crust stratigraphy using Pb and Nd isotopes and its application to paleoceanographic reconstruction in the Atlantic

    Get PDF
    Eight ferromanganese crust samples spanning the complete depth range of Tropic Seamount in the north‐east Atlantic were analysed for Pb and Nd isotopes to reconstruct water mass origin and mixing over the last 75 Ma. Pb isotopes were determined by LA‐MC‐ICP‐MS, which enables the rapid production of large, high spatial‐resolution datasets. This makes it possible to precisely correlate stratigraphy between different samples, compare contemporaneous layers, and create a composite record given the abundance of hiatuses in crusts. Pb and Nd isotope data show the influence of various oceanic and continental end‐members in the north‐east Atlantic Ocean. This reflects its evolution from a restricted, isolated basins in the Late Cretaceous with influxes from the Tethys Ocean, to an increasingly well‐mixed, large‐scale basin, with a dominant Southern Ocean signature until the Miocene. Less‐radiogenic Nd isotope signatures suggest Labrador Sea Water influenced the north‐east Atlantic basin as early as 17‐15 Ma, flowing through a northern route such as the Charlie‐Gibbs Fracture Zone. Pb and Nd isotopes highlight the increasing influence of Saharan aeolian dust input about 7 Ma, imparting a less‐radiogenic excursion to the binary mixing between North Atlantic water masses and riverine discharge from West and Central Africa. This highlights the influence of aeolian dust input on the open ocean Pb and Nd budget, and supports an early stage of North African aridification in the Late Miocene. This signature is overprinted about 3 Ma to the present by a strong North Atlantic Deep Water signature following the onset of Northern Hemisphere glaciation

    Study on future UK demand and supply of lithium, nickel, cobalt, manganese and graphite for electric vehicle batteries

    Get PDF
    This report has been produced by the British Geological Survey (BGS) under the auspices of the Department for Business, Energy and Industrial Strategy (BEIS)-funded UK Critical Minerals Intelligence Centre (CMIC). It is the first output from CMIC, which aims to provide up to date, accurate, high resolution data and dynamic analysis on primary and secondary minerals resources, supply, stocks and flows of critical minerals, in the UK and globall

    Potential for critical raw material prospectivity in the UK

    Get PDF
    The UK Critical Minerals Strategy (BEIS, 2022) includes a commitment to “begin a nationalscale assessment of the critical minerals within the UK. By March 2023, we will collate geoscientific data and identify target areas of potential”. This report provides that national-scale assessment of the geological potential for critical raw materials in the UK. It represents the published output of a study, jointly funded by the British Geological Survey and the Department for Business and Trade, which reviewed available geoscientific data in order to identify areas of potential geological prospectivity for critical raw materials in the UK. Critical raw materials (CRMs) are those mineral commodities that are both economically important and at risk of supply disruption. The commodities addressed in this report are those identified as critical to the UK by the Critical Minerals Intelligence Centre (CMIC) (Lusty et al., 2021). These CRMs are currently obtained from mining across the world, but at the time of writing none are produced in the UK, although tungsten has been mined in recent years. Some CRMs such as lithium, tin and graphite are typically the primary products of mines, whereas others are produced as co- or by-products of major commodities such as gold, copper or zinc. Current understanding of the UK’s mineral resource endowment rests largely on evidence from historic mining and exploration, together with targeted academic research. The UK has an extensive history of mining that dates to prehistoric times. Gold, barite, fluorite, gypsum, potash and polyhalite are among the commodities that are currently mined, and exploration for many raw materials is occurring across the whole of the UK. The work presented in this report follows a methodology known as a mineral systems approach, which relies on the concept that all mineral deposits of a certain type were formed by a combination of particular geological processes (McCuaig et al., 2010). The processes that must operate for a mineral deposit to form are identified and translated into mappable target criteria derived from available datasets. Key datasets to be used would typically include geological maps, geochemical soil and stream sediment maps, geophysical maps, and mineral occurrence databases. The UK has full geological map coverage, but other datasets are incomplete, with high-resolution geophysical data only being available for limited areas. New stream sediment geochemistry maps were created as part of this work and are available on the CMIC interactive map portal1 , but the whole country is not covered for all elements. These data limitations mean that this report only provides a knowledge-driven assessment of geological potential for CRM prospectivity across the UK. It provides maps for CRMs (grouped or singly as geologically appropriate) indicating the areas where the geological criteria have been met and thus there is potential for deposits of these CRMs to occur. It is important to note that the maps represent areas of potential prospectivity, not where deposits of critical minerals are guaranteed to be found, and also that mineral deposits could be found beyond the identified prospective areas, where localised geological conditions are suitable. The areas identified in the maps can be considered as targets for more detailed research and exploration. This report focuses solely on the geological potential and does not consider other aspects such as environmental designations and planning considerations that may affect the development of a mineral deposit. Combining all the individual maps highlights areas that are prospective for several CRMs and are thus priority for further geological investigations. From north to south, these areas include: areas of prospective geology around Loch Maree near Gairloch; parts of the central Highlands and Aberdeenshire; areas of prospective geology in mid-County Tyrone in Northern Ireland; parts of Cumbria; parts of the North Pennine Orefield; areas in north-west Wales and Pembrokeshire; and south-west England. These areas should now be the focus for collection of new geological, geochemical and geophysical data, in order to identify new CRM prospects for detailed investigation

    Transcriptomic Analyses Reveal Novel Genes with Sexually Dimorphic Expression in the Zebrafish Gonad and Brain

    Get PDF
    Background Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs. Methodology/Principal Findings We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs), 21% of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising 6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and ‘rest-of-body’ from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially expressed transcripts (34.7% novel) that showed highest expression in ovary, testis and both gonads respectively. Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member (septin 4) has previously been implicated in reproduction in mice, were all strongly expressed in the gonads. Conclusions/Significance We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via cross-species hybridizations. Since several genes have been shown to play similar roles in gonadogenesis in zebrafish and other vertebrates, our array may even provide information on genetic disorders affecting gonadal phenotypes and fertility in mammals
    corecore