36 research outputs found

    brainlife.io: A decentralized and open source cloud platform to support neuroscience research

    Full text link
    Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool development to support rigor and transparency. Consequently, the complexity of the data pipeline has also increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io was developed to reduce these burdens and democratize modern neuroscience research across institutions and career levels. Using community software and hardware infrastructure, the platform provides open-source data standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and transparency in neuroscience research. Here brainlife.io's technology and data services are described and evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and 3,200 participants, we demonstrate that brainlife.io's services produce outputs that adhere to best practices in modern neuroscience research

    Implications for sequencing of biologic therapy and choice of second anti-TNF in patients with inflammatory bowel disease:results from the IMmunogenicity to Second Anti-TNF therapy (IMSAT) therapeutic drug monitoring study

    Get PDF
    BACKGROUND: Anti-drug antibodies are associated with treatment failure to anti-TNF agents in patients with inflammatory bowel disease (IBD).AIM: To assess whether immunogenicity to a patient's first anti-TNF agent would be associated with immunogenicity to the second, irrespective of drug sequence METHODS: We conducted a UK-wide, multicentre, retrospective cohort study to report rates of immunogenicity and treatment failure of second anti-TNF therapies in 1058 patients with IBD who underwent therapeutic drug monitoring for both infliximab and adalimumab. The primary outcome was immunogenicity to the second anti-TNF agent, defined at any timepoint as an anti-TNF antibody concentration ≥9 AU/ml for infliximab and ≥6 AU/ml for adalimumab.RESULTS: In patients treated with infliximab and then adalimumab, those who developed antibodies to infliximab were more likely to develop antibodies to adalimumab, than patients who did not develop antibodies to infliximab (OR 1.99, 95%CI 1.27-3.20, p = 0.002). Similarly, in patients treated with adalimumab and then infliximab, immunogenicity to adalimumab was associated with subsequent immunogenicity to infliximab (OR 2.63, 95%CI 1.46-4.80, p < 0.001). For each 10-fold increase in anti-infliximab and anti-adalimumab antibody concentration, the odds of subsequently developing antibodies to adalimumab and infliximab increased by 1.73 (95% CI 1.38-2.17, p < 0.001) and 1.99 (95%CI 1.34-2.99, p < 0.001), respectively. Patients who developed immunogenicity with undetectable drug levels to infliximab were more likely to develop immunogenicity with undetectable drug levels to adalimumab (OR 2.37, 95% CI 1.39-4.19, p < 0.001). Commencing an immunomodulator at the time of switching to the second anti-TNF was associated with improved drug persistence in patients with immunogenic, but not pharmacodynamic failure.CONCLUSION: Irrespective of drug sequence, immunogenicity to the first anti-TNF agent was associated with immunogenicity to the second, which was mitigated by the introduction of an immunomodulator in patients with immunogenic, but not pharmacodynamic treatment failure

    Implications for sequencing of biologic therapy and choice of second anti-TNF in patients with inflammatory bowel disease: results from the IMmunogenicity to Second Anti-TNF Therapy (IMSAT) therapeutic drug monitoring study

    Get PDF
    BACKGROUND: Anti-drug antibodies are associated with treatment failure to anti-TNF agents in patients with inflammatory bowel disease (IBD).AIM: To assess whether immunogenicity to a patient's first anti-TNF agent would be associated with immunogenicity to the second, irrespective of drug sequence METHODS: We conducted a UK-wide, multicentre, retrospective cohort study to report rates of immunogenicity and treatment failure of second anti-TNF therapies in 1058 patients with IBD who underwent therapeutic drug monitoring for both infliximab and adalimumab. The primary outcome was immunogenicity to the second anti-TNF agent, defined at any timepoint as an anti-TNF antibody concentration ≥9 AU/ml for infliximab and ≥6 AU/ml for adalimumab.RESULTS: In patients treated with infliximab and then adalimumab, those who developed antibodies to infliximab were more likely to develop antibodies to adalimumab, than patients who did not develop antibodies to infliximab (OR 1.99, 95%CI 1.27-3.20, p = 0.002). Similarly, in patients treated with adalimumab and then infliximab, immunogenicity to adalimumab was associated with subsequent immunogenicity to infliximab (OR 2.63, 95%CI 1.46-4.80, p < 0.001). For each 10-fold increase in anti-infliximab and anti-adalimumab antibody concentration, the odds of subsequently developing antibodies to adalimumab and infliximab increased by 1.73 (95% CI 1.38-2.17, p < 0.001) and 1.99 (95%CI 1.34-2.99, p < 0.001), respectively. Patients who developed immunogenicity with undetectable drug levels to infliximab were more likely to develop immunogenicity with undetectable drug levels to adalimumab (OR 2.37, 95% CI 1.39-4.19, p < 0.001). Commencing an immunomodulator at the time of switching to the second anti-TNF was associated with improved drug persistence in patients with immunogenic, but not pharmacodynamic failure.CONCLUSION: Irrespective of drug sequence, immunogenicity to the first anti-TNF agent was associated with immunogenicity to the second, which was mitigated by the introduction of an immunomodulator in patients with immunogenic, but not pharmacodynamic treatment failure

    Implications for sequencing of biologic therapy and choice of second anti-TNF in patients with inflammatory bowel disease:results from the IMmunogenicity to Second Anti-TNF therapy (IMSAT) therapeutic drug monitoring study

    Get PDF
    BACKGROUND: Anti-drug antibodies are associated with treatment failure to anti-TNF agents in patients with inflammatory bowel disease (IBD).AIM: To assess whether immunogenicity to a patient's first anti-TNF agent would be associated with immunogenicity to the second, irrespective of drug sequence METHODS: We conducted a UK-wide, multicentre, retrospective cohort study to report rates of immunogenicity and treatment failure of second anti-TNF therapies in 1058 patients with IBD who underwent therapeutic drug monitoring for both infliximab and adalimumab. The primary outcome was immunogenicity to the second anti-TNF agent, defined at any timepoint as an anti-TNF antibody concentration ≥9 AU/ml for infliximab and ≥6 AU/ml for adalimumab.RESULTS: In patients treated with infliximab and then adalimumab, those who developed antibodies to infliximab were more likely to develop antibodies to adalimumab, than patients who did not develop antibodies to infliximab (OR 1.99, 95%CI 1.27-3.20, p = 0.002). Similarly, in patients treated with adalimumab and then infliximab, immunogenicity to adalimumab was associated with subsequent immunogenicity to infliximab (OR 2.63, 95%CI 1.46-4.80, p < 0.001). For each 10-fold increase in anti-infliximab and anti-adalimumab antibody concentration, the odds of subsequently developing antibodies to adalimumab and infliximab increased by 1.73 (95% CI 1.38-2.17, p < 0.001) and 1.99 (95%CI 1.34-2.99, p < 0.001), respectively. Patients who developed immunogenicity with undetectable drug levels to infliximab were more likely to develop immunogenicity with undetectable drug levels to adalimumab (OR 2.37, 95% CI 1.39-4.19, p < 0.001). Commencing an immunomodulator at the time of switching to the second anti-TNF was associated with improved drug persistence in patients with immunogenic, but not pharmacodynamic failure.CONCLUSION: Irrespective of drug sequence, immunogenicity to the first anti-TNF agent was associated with immunogenicity to the second, which was mitigated by the introduction of an immunomodulator in patients with immunogenic, but not pharmacodynamic treatment failure

    Plasma Metabolomics Analysis of Polyvinyl Chloride Workers Identifies Altered Processes and Candidate Biomarkers for Hepatic Hemangiosarcoma and Its Development

    No full text
    Background: High-level occupational vinyl chloride (VC) exposures have been associated with hepatic hemangiosarcoma, which typically develops following a long latency period. Although VC is genotoxic, a more comprehensive mode of action has not been determined and diagnostic biomarkers have not been established. The purpose of this study is to address these knowledge gaps through plasma metabolomics. Methods: Plasma samples from polyvinyl chloride polymerization workers who developed hemangiosarcoma (cases, n = 15) and VC exposure-matched controls (n = 17) underwent metabolomic analysis. Random forest and bioinformatic analyses were performed. Results: Cases and controls had similar demographics and routine liver biochemistries. Mass spectroscopy identified 606 known metabolites. Random forest analysis had an 82% predictive accuracy for group classification. 60 metabolites were significantly increased and 44 were decreased vs. controls. Taurocholate, bradykinin and fibrin degradation product 2 were up-regulated by greater than 80-fold. The naturally occurring anti-angiogenic phenol, 4-hydroxybenzyl alcohol, was down-regulated 5-fold. Top affected ontologies involved: (i) metabolism of bile acids, taurine, cholesterol, fatty acids and amino acids; (ii) inflammation and oxidative stress; and (iii) nicotinic cholinergic signaling. Conclusions: The plasma metabolome was differentially regulated in polyvinyl chloride workers who developed hepatic hemangiosarcoma. Ontologies potentially involved in hemangiosarcoma pathogenesis and candidate biomarkers were identified
    corecore