10 research outputs found

    Tuning the Flight Length of Molecules Diffusing on a Hydrophobic Surface

    No full text
    Transport at solid–liquid interfaces is critical to self-assembly, biosensing, and heterogeneous catalysis, but surface diffusion remains difficult to characterize and rationally manipulate, due to the inherent heterogeneity of adsorption on solid surfaces. Using single-molecule tracking, we characterized the diffusion of a fluorescent long-chain surfactant on a hydrophobic surface, which involved periods of confinement alternating with bulk-mediated “flights”. The concentration of methanol in solution was varied to tune the strength of the hydrophobic surface-molecule interaction. The frequency of confinement had a nonmonotonic dependence on methanol concentration that reflected the relative influence of anomalously strong adsorption sites. By carefully accounting for the effect of this surface heterogeneity, we demonstrated that flight lengths increased monotonically as the hydrophobic attraction decreased, in agreement with theoretical predictions for bulk-mediated surface diffusion. The theory provided an accurate description of surface diffusion, despite the system being heterogeneous, and can be leveraged to optimize molecular search and assembly processes

    Capturing Conformation-Dependent Molecule–Surface Interactions When Surface Chemistry Is Heterogeneous

    No full text
    Molecular building blocks, such as carbon nanotubes and DNA origami, can be fully integrated into electronic and optical devices if they can be assembled on solid surfaces using biomolecular interactions. However, the conformation and functionality of biomolecules depend strongly on the local chemical environment, which is highly heterogeneous near a surface. To help realize the potential of biomolecular self-assembly, we introduce here a technique to spatially map molecular conformations and adsorption, based on single-molecule fluorescence microscopy. On a deliberately patterned surface, with regions of varying hydrophobicity, we characterized the conformations of adsorbed helicogenic alanine-lysine copeptides using Förster resonance energy transfer. The peptides adopted helical conformations on hydrophilic regions of the surface more often than on hydrophobic regions, consistent with previous ensemble-averaged observations of α-helix surface stability. Interestingly, this dependence on surface chemistry was not due to surface-induced unfolding, as the apparent folding and unfolding dynamics were usually much slower than desorption. The most significant effect of surface chemistry was on the adsorption rate of molecules as a function of their initial conformational state. In particular, regions with higher adsorption rates attracted more molecules in compact, disordered coil states, and this difference in adsorption rates dominated the average conformation of the ensemble. The correlation between adsorption rate and average conformation was also observed on nominally uniform surfaces. Spatial variations in the functional state of adsorbed molecules would strongly affect the success rates of surface-based molecular assembly and can be fully understood using the approach developed in this work

    Single-Molecule Tracking of Polymer Surface Diffusion

    No full text
    The dynamics of polymers adsorbed to a solid surface are important in thin-film formation, adhesion phenomena, and biosensing applications, but they are still poorly understood. Here we present tracking data that follow the dynamics of isolated poly­(ethylene glycol) chains adsorbed at a hydrophobic solid–liquid interface. We found that molecules moved on the surface via a continuous-time random walk mechanism, where periods of immobilization were punctuated by desorption-mediated jumps. The dependence of the surface mobility on molecular weight (2, 5, 10, 20, and 40 kg/mol were investigated) suggested that surface-adsorbed polymers maintained effectively three-dimensional surface conformations. These results indicate that polymer surface diffusion, rather than occurring in the two dimensions of the interface, is dominated by a three-dimensional mechanism that leads to large surface displacements and significant bulk–surface coupling

    Single-Molecule Insights into Retention at a Reversed-Phase Chromatographic Interface

    No full text
    The efficiency of chromatographic separations decreases markedly when peaks exhibit asymmetry (e.g., “peak tailing”). Theoretically, these effects can arise from heterogeneous adsorption kinetics. To investigate the nature and consequences of such heterogeneity, we used a combination of single-molecule imaging and reversed-phase liquid chromatography (RPLC). In both single-molecule and macroscopic RPLC experiments, the stationary phase was hydrophobic end-capped (trimethylsilyl-functionalized) silica, which we exposed to different methanol/water solutions (50%–62% methanol), containing a fluorescent fatty acid analyte. Super-resolution maps based on single-molecule observations revealed rare, strong adsorption sites with activity that varied significantly with methanol concentration. The adsorption and desorption kinetics on the strong sites were heterogeneous and positively correlated, suggesting a broad underlying distribution of site binding energies. Adsorption equilibrium on the strong sites was more sensitive to solution conditions than overall retention measured in RPLC experiments, suggesting that the effect of strong sites on the overall adsorption kinetics should change with solution conditions. Interestingly, in RPLC experiments, peak tailing had a nonmonotonic dependence on methanol concentration within the range studied. Using the stochastic model of chromatography, we showed quantitatively that our single-molecule kinetic results were consistent with this macroscopic trend. This approach to identifying and quantifying adsorption sites should be useful for designing better chromatographic separations and for identifying the role of heterogeneous surface chemistry in molecular dynamics

    Single-Molecule Resolution of Protein Dynamics on Polymeric Membrane Surfaces: The Roles of Spatial and Population Heterogeneity

    No full text
    Although polymeric membranes are widely used in the purification of protein pharmaceuticals, interactions between biomolecules and membrane surfaces can lead to reduced membrane performance and damage to the product. In this study, single-molecule fluorescence microscopy provided direct observation of bovine serum albumin (BSA) and human monoclonal antibody (IgG) dynamics at the interface between aqueous buffer and polymeric membrane materials including regenerated cellulose and unmodified poly­(ether sulfone) (PES) blended with either polyvinylpyrrolidone (PVP), polyvinyl acetate-<i>co</i>-polyvinylpyrrolidone (PVAc-PVP), or polyethylene glycol methacrylate (PEGM) before casting. These polymer surfaces were compared with model surfaces composed of hydrophilic bare fused silica and hydrophobic trimethylsilane-coated fused silica. At extremely dilute protein concentrations (10<sup>–3</sup>–10<sup>–7</sup> mg/mL), protein surface exchange was highly dynamic with protein monomers desorbing from the surface within ∌1 s after adsorption. Protein oligomers (e.g., nonspecific dimers, trimers, or larger aggregates), although less common, remained on the surface for 5 times longer than monomers. Using newly developed super-resolution methods, we could localize adsorption sites with ∌50 nm resolution and quantify the spatial heterogeneity of the various surfaces. On a small anomalous subset of the adsorption sites, proteins adsorbed preferentially and tended to reside for significantly longer times (i.e., on “strong” sites). Proteins resided for shorter times overall on surfaces that were more homogeneous and exhibited fewer strong sites (e.g., PVAc-PVP/PES). We propose that strong surface sites may nucleate protein aggregation, initiated preferentially by protein oligomers, and accelerate ultrafiltration membrane fouling. At high protein concentrations (0.3–1.0 mg/mL), fewer strong adsorption sites were observed, and surface residence times were reduced. This suggests that at high concentrations, adsorbed proteins block strong sites from further protein adsorption. Importantly, this demonstrates that strong binding sites can be modified by changing solution conditions. Membrane surfaces are intrinsically heterogeneous; by employing single-molecule techniques, we have provided a new framework for understanding protein interactions with such surfaces
    corecore