7 research outputs found

    Theory, design, and development of an open-source 3D printed peristaltic pump for microfluidics applications

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2022Microfluidics research is a constantly evolving and developing field of research in the biological, chemical, and medical sciences. To perform microfluidic analyses, various types of pump designs have been developed or optimized. These pumps are generally capable of pumping flow in the range of 0.1-100s of microliters (µL) per minute, with the goal of pumping fluid with an extremely consistent flow rate. These pumps include, but are not limited to, peristaltic, syringe, membrane, and lobe pumps. Both commercial and open-source designs have been developed to meet the needs of continued research. Commercial designs are very expensive, but offer limited flexibility to tailor the usage for custom assays. Open-source designs that have been presented may lack support, or may be designed to use fabrication technologies that are less commonly available than conventional desktop 3D printing. Due to this, many laboratories may be limited in their microfluidic research work due to either availability of commercial pumps, or usability of open-source pump designs. This work presents two iterations of a novel design for a 3D-printable microfluidic peristaltic pump. The pumps developed herein have been tested to demonstrate consistent performance operating over long-term periods of up to ten days continuously. These pumps have been tested to demonstrate capability of delivering aqueous flow as slow as flow ranges of 10s of µL/min. These pumps are capable of maintaining an outlet pressure of up to 220 kilopascals (kPa). In a tube of 1 mm inner diameter, this pressure would drive a flow rate of 10 µL/min through tubing up to 6.6 meters long. Finally, this design has been optimized to improve the user experience and make these peristaltic pumps both easy to maintain and easy to operate by a non-technical user.Chapter 1. Introduction -- Chapter 2. Initial prototype of 3D printed peristaltic pumps -- Chapter 3. Improved design (version 2) -- Chapter 4: Testing results of version 2 pump -- Chapter 5: Gonclusions and future work -- References -- Appendix

    Characterization of the John A. Galt telescope for radio holography with CHIME

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) will measure the 21 cm emission of astrophysical neutral hydrogen to probe large scale structure at redshifts z=0.8-2.5. However, detecting the 21 cm signal beneath substantially brighter foregrounds remains a key challenge. Due to the high dynamic range between 21 cm and foreground emission, an exquisite calibration of instrument systematics, notably the telescope beam, is required to successfully filter out the foregrounds. One technique being used to achieve a high fidelity measurement of the CHIME beam is radio holography, wherein signals from each of CHIME's analog inputs are correlated with the signal from a co-located reference antenna, the 26 m John A. Galt telescope, as the 26 m Galt telescope tracks a bright point source transiting over CHIME. In this work we present an analysis of several of the Galt telescope's properties. We employ driftscan measurements of several bright sources, along with background estimates derived from the 408 MHz Haslam map, to estimate the Galt system temperature. To determine the Galt telescope's beam shape, we perform and analyze a raster scan of the bright radio source Cassiopeia A. Finally, we use early holographic measurements to measure the Galt telescope's geometry with respect to CHIME for the holographic analysis of the CHIME and Galt interferometric data set

    A Detection of Cosmological 21 cm Emission from CHIME in Cross-correlation with eBOSS Measurements of the Lyman-α\alpha Forest

    Full text link
    We report the detection of 21 cm emission at an average redshift zˉ=2.3\bar{z} = 2.3 in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyman-α\alpha forest from eBOSS. Data collected by CHIME over 88 days in the 400−500400-500~MHz frequency band (1.8<z<2.51.8 < z < 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales with k∥≲0.13 Mpc−1k_\parallel \lesssim 0.13\ \text{Mpc}^{-1} at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyman-α\alpha forest flux transmission spectra to estimate the 21 cm-Lyman-α\alpha cross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σ9\sigma detection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals ∼6−10\sim6-10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of \tcm emission to date, and set the stage for future 21 cm intensity mapping analyses at z>1.8z>1.8

    Detection of Cosmological 21 cm Emission with the Canadian Hydrogen Intensity Mapping Experiment

    No full text
    We present a detection of 21 cm emission from large-scale structure (LSS) between redshift 0.78 and 1.43 made with the Canadian Hydrogen Intensity Mapping Experiment. Radio observations acquired over 102 nights are used to construct maps that are foreground filtered and stacked on the angular and spectral locations of luminous red galaxies (LRGs), emission-line galaxies (ELGs), and quasars (QSOs) from the eBOSS clustering catalogs. We find decisive evidence for a detection when stacking on all three tracers of LSS, with the logarithm of the Bayes factor equal to 18.9 (LRG), 10.8 (ELG), and 56.3 (QSO). An alternative frequentist interpretation, based on the likelihood ratio test, yields a detection significance of 7.1 σ (LRG), 5.7 σ (ELG), and 11.1 σ (QSO). These are the first 21 cm intensity mapping measurements made with an interferometer. We constrain the effective clustering amplitude of neutral hydrogen (H i ), defined as AH I≡103 ΩH I(bH I+⟨ fμ2⟩){{ \mathcal A }}_{{\rm{H}}\,{\rm\small{I}}}\equiv {10}^{3}\,{{\rm{\Omega }}}_{{\rm{H}}\,{\rm\small{I}}}\left({b}_{{\rm{H}}\,{\rm\small{I}}}+\langle \,f{\mu }^{2}\rangle \right) , where Ω _H _i is the cosmic abundance of H i , b _H _i is the linear bias of H i , and 〈 f μ ^2 〉 = 0.552 encodes the effect of redshift-space distortions at linear order. We find AH I=1.51−0.97+3.60{{ \mathcal A }}_{{\rm{H}}\,{\rm\small{I}}}={1.51}_{-0.97}^{+3.60} for LRGs ( z = 0.84), AH I=6.76−3.79+9.04{{ \mathcal A }}_{{\rm{H}}\,{\rm\small{I}}}={6.76}_{-3.79}^{+9.04} for ELGs ( z = 0.96), and AH I=1.68−0.67+1.10{{ \mathcal A }}_{{\rm{H}}\,{\rm\small{I}}}={1.68}_{-0.67}^{+1.10} for QSOs ( z = 1.20), with constraints limited by modeling uncertainties at nonlinear scales. We are also sensitive to bias in the spectroscopic redshifts of each tracer, and we find a nonzero bias Δ v = − 66 ± 20 km s ^−1 for the QSOs. We split the QSO catalog into three redshift bins and have a decisive detection in each, with the upper bin at z = 1.30 producing the highest-redshift 21 cm intensity mapping measurement thus far

    Risk of Epidural Hematoma after Neuraxial Techniques in Thrombocytopenic Parturients : A Report from the Multicenter Perioperative Outcomes Group

    No full text
    BACKGROUND:: Thrombocytopenia has been considered a relative or even absolute contraindication to neuraxial techniques due to the risk of epidural hematoma. There is limited literature to estimate the risk of epidural hematoma in thrombocytopenic parturients. The authors reviewed a large perioperative database and performed a systematic review to further define the risk of epidural hematoma requiring surgical decompression in this population. METHODS:: The authors performed a retrospective cohort study using the Multicenter Perioperative Outcomes Group database to identify thrombocytopenic parturients who received a neuraxial technique and to estimate the risk of epidural hematoma. Patients were stratified by platelet count, and those requiring surgical decompression were identified. A systematic review was performed, and risk estimates were combined with those from the existing literature. RESULTS:: A total of 573 parturients with a platelet count less than 100,000 mm who received a neuraxial technique across 14 institutions were identified in the Multicenter Perioperative Outcomes Group database, and a total of 1,524 parturients were identified after combining the data from the systematic review. No cases of epidural hematoma requiring surgical decompression were observed. The upper bound of the 95% CI for the risk of epidural hematoma for a platelet count of 0 to 49,000 mm is 11%, for 50,000 to 69,000 mm is 3%, and for 70,000 to 100,000 mm is 0.2%. CONCLUSIONS:: The number of thrombocytopenic parturients in the literature who received neuraxial techniques without complication has been significantly increased. The risk of epidural hematoma associated with neuraxial techniques in parturients at a platelet count less than 70,000 mm remains poorly defined due to limited observations

    Risk of Epidural Hematoma after Neuraxial Techniques in Thrombocytopenic Parturients : A Report from the Multicenter Perioperative Outcomes Group

    No full text
    BACKGROUND:: Thrombocytopenia has been considered a relative or even absolute contraindication to neuraxial techniques due to the risk of epidural hematoma. There is limited literature to estimate the risk of epidural hematoma in thrombocytopenic parturients. The authors reviewed a large perioperative database and performed a systematic review to further define the risk of epidural hematoma requiring surgical decompression in this population. METHODS:: The authors performed a retrospective cohort study using the Multicenter Perioperative Outcomes Group database to identify thrombocytopenic parturients who received a neuraxial technique and to estimate the risk of epidural hematoma. Patients were stratified by platelet count, and those requiring surgical decompression were identified. A systematic review was performed, and risk estimates were combined with those from the existing literature. RESULTS:: A total of 573 parturients with a platelet count less than 100,000 mm who received a neuraxial technique across 14 institutions were identified in the Multicenter Perioperative Outcomes Group database, and a total of 1,524 parturients were identified after combining the data from the systematic review. No cases of epidural hematoma requiring surgical decompression were observed. The upper bound of the 95% CI for the risk of epidural hematoma for a platelet count of 0 to 49,000 mm is 11%, for 50,000 to 69,000 mm is 3%, and for 70,000 to 100,000 mm is 0.2%. CONCLUSIONS:: The number of thrombocytopenic parturients in the literature who received neuraxial techniques without complication has been significantly increased. The risk of epidural hematoma associated with neuraxial techniques in parturients at a platelet count less than 70,000 mm remains poorly defined due to limited observations
    corecore