33 research outputs found

    Signal Detection on the Battlefield: Priming Self-Protection vs. Revenge-Mindedness Differentially Modulates the Detection of Enemies and Allies

    Get PDF
    Detecting signs that someone is a member of a hostile outgroup can depend on very subtle cues. How do ecology-relevant motivational states affect such detections? This research investigated the detection of briefly-presented enemy (versus friend) insignias after participants were primed to be self-protective or revenge-minded. Despite being told to ignore the objectively nondiagnostic cues of ethnicity (Arab vs. Western/European), gender, and facial expressions of the targets, both priming manipulations enhanced biases to see Arab males as enemies. They also reduced the ability to detect ingroup enemies, even when these faces displayed angry expressions. These motivations had very different effects on accuracy, however, with self-protection enhancing overall accuracy and revenge-mindedness reducing it. These methods demonstrate the importance of considering how signal detection tasks that occur in motivationally-charged environments depart from results obtained in conventionally motivationally-inert laboratory settings.National Institute of Mental Health (U.S.) (Grant MH64734)U.S. Army Research Institute for the Behavioral and Social Sciences (Grant W74V8H-05-K-0003)National Science Foundation (U.S.) (Grant BCS-0642873

    Three Warm Jupiters around Solar-analog Stars Detected with TESS*

    Get PDF
    We report the discovery and characterization of three giant exoplanets orbiting solar-analog stars, detected by the TESS space mission and confirmed through ground-based photometry and radial velocity measurements taken at La Silla observatory with FEROS. TOI-2373 b is a warm Jupiter orbiting its host star every ∼13.3 days, and is one of the most massive known exoplanet with a precisely determined mass and radius around a star similar to the Sun, with an estimated mass of m _p = 9.30.2+0.2Mjup{9.3}_{-0.2}^{+0.2}\,{M}_{\mathrm{jup}} and a radius of r _p = 0.930.2+0.2Rjup{0.93}_{-0.2}^{+0.2}\,{R}_{\mathrm{jup}} . With a mean density of ρ=14.41.0+0.9gcm3\rho ={14.4}_{-1.0}^{+0.9}\,{\rm{g}}\,{\mathrm{cm}}^{-3} , TOI-2373 b is among the densest planets discovered so far. TOI-2416 b orbits its host star on a moderately eccentric orbit with a period of ∼8.3 days and an eccentricity of e = 0.320.02+0.02{0.32}_{-0.02}^{+0.02} . TOI-2416 b is more massive than Jupiter with m _p = 3.00.09+0.10Mjup{3.0}_{-0.09}^{+0.10}\,{M}_{\mathrm{jup}} , however is significantly smaller with a radius of r _p = 0.880.02+0.02,Rjup{0.88}_{-0.02}^{+0.02},{R}_{\mathrm{jup}} , leading to a high mean density of ρ=5.40.3+0.3gcm3\rho ={5.4}_{-0.3}^{+0.3}\,{\rm{g}}\,{\mathrm{cm}}^{-3} . TOI-2524 b is a warm Jupiter near the hot Jupiter transition region, orbiting its star every ∼7.2 days on a circular orbit. It is less massive than Jupiter with a mass of m _p = 0.640.04+0.04Mjup{0.64}_{-0.04}^{+0.04}\,{M}_{\mathrm{jup}} , and is consistent with an inflated radius of r _p = 1.000.03+0.02Rjup{1.00}_{-0.03}^{+0.02}\,{R}_{\mathrm{jup}} , leading to a low mean density of ρ=0.790.08+0.08gcm3\rho ={0.79}_{-0.08}^{+0.08}\,{\rm{g}}\,{\mathrm{cm}}^{-3} . The newly discovered exoplanets TOI-2373 b, TOI-2416 b, and TOI-2524 b have estimated equilibrium temperatures of 86010+10{860}_{-10}^{+10} K, 108010+10{1080}_{-10}^{+10} K, and 110020+20{1100}_{-20}^{+20} K, respectively, placing them in the sparsely populated transition zone between hot and warm Jupiters

    Three long period transiting giant planets from TESS

    Get PDF
    We report the discovery and orbital characterization of three new transiting warm giant planets. These systems were initially identified as presenting single transit events in the light curves generated from the full frame images of the Transiting Exoplanet Survey Satellite (TESS). Follow-up radial velocity measurements and additional light curves were used to determine the orbital periods and confirm the planetary nature of the candidates. The planets orbit slightly metal-rich late F- and early G-type stars. We find that TOI 4406b has a mass of MPM_P= 0.30 ±\pm 0.04 MJM_J , a radius of RPR_P= 1.00 ±\pm 0.02 RJR_J , and a low eccentricity orbit (e=0.15 ±\pm 0.05) with a period of P= 30.08364 ±\pm 0.00005 d . TOI 2338b has a mass of MPM_P= 5.98 ±\pm 0.20 MJM_J , a radius of RPR_P= 1.00 ±\pm 0.01 RJR_J , and a highly eccentric orbit (e= 0.676 ±\pm 0.002 ) with a period of P= 22.65398 ±\pm 0.00002 d . Finally, TOI 2589b has a mass of MPM_P= 3.50 ±\pm 0.10 MJM_J , a radius of RPR_P= 1.08 ±\pm 0.03 RJR_J , and an eccentric orbit (e = 0.522 ±\pm 0.006 ) with a period of P= 61.6277 ±\pm 0.0002 d . TOI 4406b and TOI 2338b are enriched in metals compared to their host stars, while the structure of TOI 2589b is consistent with having similar metal enrichment to its host star.Comment: 24 pages, 16 figures, accepted in A

    TOI-199 b: A well-characterized 100-day transiting warm giant planet with TTVs seen from Antarctica

    Full text link
    We present the spectroscopic confirmation and precise mass measurement of the warm giant planet TOI-199 b. This planet was first identified in TESS photometry and confirmed using ground-based photometry from ASTEP in Antarctica including a full 6.5\,h long transit, PEST, Hazelwood, and LCO; space photometry from NEOSSat; and radial velocities (RVs) from FEROS, HARPS, CORALIE, and CHIRON. Orbiting a late G-type star, TOI-199\,b has a 104.8540.002+0.001d\mathrm{104.854_{-0.002}^{+0.001} \, d} period, a mass of 0.17±0.02MJ\mathrm{0.17\pm0.02 \, M_J}, and a radius of 0.810±0.005RJ\mathrm{0.810\pm0.005 \, R_J}. It is the first warm exo-Saturn with a precisely determined mass and radius. The TESS and ASTEP transits show strong transit timing variations, pointing to the existence of a second planet in the system. The joint analysis of the RVs and TTVs provides a unique solution for the non-transiting companion TOI-199 c, which has a period of 273.690.22+0.26d\mathrm{273.69_{-0.22}^{+0.26} \, d} and an estimated mass of 0.280.01+0.02MJ\mathrm{0.28_{-0.01}^{+0.02} \, M_J}. This period places it within the conservative Habitable Zone.Comment: 33 pages, 23 figures. Accepted for publication in A

    A long-period transiting substellar companion in the super-Jupiters to brown dwarfs mass regime and a prototypical warm-Jupiter detected by TESS

    Get PDF
    We report on the confirmation and follow-up characterization of two long-period transiting substellar companions on low-eccentricity orbits around TIC 4672985 and TOI-2529, whose transit events were detected by the TESS space mission. Ground-based photometric and spectroscopic follow up from different facilities, confirmed the substellar nature of TIC 4672985 b, a massive gas giant, in the transition between the super-Jupiters and brown-dwarfs mass regime. From the joint analysis we derived the following orbital parameters: P = 69.0480+0.0004−0.0005 d, Mp = 12.74+1.01−1.01 MJ, Rp =1.026+0.065−0.067 RJ and e = 0.018+0.004−0.004 . In addition, the RV time series revealed a significant trend at the ∼ 350 m s−1 yr−1level, which is indicative of the presence of a massive outer companion in the system. TIC 4672985 b is a unique example of a transiting substellar companion with a mass above the deuterium-burning limit, located beyond 0.1 AU and in a nearly circular orbit. These planetary properties are difficult to reproduce from canonical planet formation and evolution models. For TOI-2529 b, we obtained the following orbital parameters: P = 64.5949+0.0003−0.0003 d, Mp =2.340+0.197−0.195 MJ, Rp = 1.030+0.050−0.050 RJ and e = 0.021+0.024−0.015 , making this object a new example of a growing population of transiting warm giant planets

    TESS spots a mini-neptune interior to a hot saturn in the TOI-2000 system

    Get PDF
    Hot jupiters (P 60 M\mathrm{M}_\oplus) are almost always found alone around their stars, but four out of hundreds known have inner companion planets. These rare companions allow us to constrain the hot jupiter's formation history by ruling out high-eccentricity tidal migration. Less is known about inner companions to hot Saturn-mass planets. We report here the discovery of the TOI-2000 system, which features a hot Saturn-mass planet with a smaller inner companion. The mini-neptune TOI-2000 b (2.70±0.15R2.70 \pm 0.15 \,\mathrm{R}_\oplus, 11.0±2.4M11.0 \pm 2.4 \,\mathrm{M}_\oplus) is in a 3.10-day orbit, and the hot saturn TOI-2000 c (8.140.30+0.31R8.14^{+0.31}_{-0.30} \,\mathrm{R}_\oplus, 81.74.6+4.7M81.7^{+4.7}_{-4.6} \,\mathrm{M}_\oplus) is in a 9.13-day orbit. Both planets transit their host star TOI-2000 (TIC 371188886, V = 10.98, TESS magnitude = 10.36), a metal-rich ([Fe/H] = 0.4390.043+0.0410.439^{+0.041}_{-0.043}) G dwarf 174 pc away. TESS observed the two planets in sectors 9-11 and 36-38, and we followed up with ground-based photometry, spectroscopy, and speckle imaging. Radial velocities from CHIRON, FEROS, and HARPS allowed us to confirm both planets by direct mass measurement. In addition, we demonstrate constraining planetary and stellar parameters with MIST stellar evolutionary tracks through Hamiltonian Monte Carlo under the PyMC framework, achieving higher sampling efficiency and shorter run time compared to traditional Markov chain Monte Carlo. Having the brightest host star in the V band among similar systems, TOI-2000 b and c are superb candidates for atmospheric characterization by the JWST, which can potentially distinguish whether they formed together or TOI-2000 c swept along material during migration to form TOI-2000 b.Comment: v3 adds RV frequency analysis; 25 pages, 11 figures, 14 tables; revision submitted to MNRAS; machine-readable tables available as ancillary files; posterior samples available from Zenodo at https://doi.org/10.5281/zenodo.7683293 and source code at https://doi.org/10.5281/zenodo.798826

    Chilaiditi Syndrome: A Case Report Highlighting the Intermittent Nature of the Disease

    No full text
    Background. Chilaiditi syndrome is a phenomenon where there is an interposition of the colon between the liver and the abdominal wall leading to clinical symptoms. This is distinct from Chilaiditi sign for which there is radiographic evidence of the interposition, but is asymptomatic. Case Presentation. Here, we present the case of a patient who, despite having clinical symptoms for a decade, had a delayed diagnosis presumably due to the interposition being intermittent and episodic. Conclusions. This case highlights the fact that Chilaiditi syndrome may be intermittent and episodic in nature. This raises an interesting question of whether previous case reports, which describe complete resolution of the syndrome after nonsurgical intervention, are perhaps just capturing periods of resolution that may have occurred spontaneously. Because the syndrome may be intermittent with spontaneous resolution and then recurrence, patients should have episodic follow-up after nonsurgical intervention

    Combined laparoscopic cholecystectomy with ileostomy reversal: A method of delayed definitive management of postoperative gallstone pancreatitis

    No full text
    Traditional management of gallstone pancreatitis (GP) has been to perform cholecystectomy during the same hospital admission after resolution. However, when GP develops in the immediate postoperative period from a major colorectal operation, cholecystectomy may be fraught with difficulty due to the inflammatory response that occurs. Thus, delaying cholecystectomy until the inflammatory response subsides may be worthwhile, and it maximizes the chances of completing the cholecystectomy laparoscopically. We have described our management of 2 patients with GP occurring after colorectal operations, which required proximal diverting ileostomy. In both cases, we deferred management of GP with either endoscopic retrograde cholangiopancreatography (ERCP) or medical conservative measures during the acute attack and performed laparoscopic cholecystectomy during ostomy reversal surgery utilizing the existing ostomy takedown site for port placement. Both patients tolerated this management well
    corecore