987 research outputs found

    Mutagen-induced diploid human lymphoblast variants containing altered hypoxanthine guanine phosphoribosyl transferase

    Full text link
    The human lymphoblast line MGL8 was treated with HAT and subsequently “mutagenized” with EMS (200 μg/ml) to give 15% survival, and 6-thioguanine-resistant cells were selected by cloning in soft agarose containing the drug (1 μg/ml). Eighteen sublines of independently derived resistant clones were isolated and studied in detail. One subline had a low residual HGPRT activity of about 1% of the parental cells. The HGPRT of this subline had a higher K m for PRPP, was more sensitive to heat, and was degraded faster by trypsin than the enzyme in extracts of MGL8 cells. This resistant subline and three others contained CRM levels of 1-38%, compared to the wild-type, so they probably represent true structural mutants of the HGPRT gene. All the variants maintained the karyotype of the parental line (46, XY, 6p − ).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45551/1/11188_2005_Article_BF01551810.pd

    Molecular Characterization of Putative Chordoma Cell Lines

    Get PDF
    Immortal tumor cell lines are an important model system for cancer research, however, misidentification and cross-contamination of cell lines are a common problem. Seven chordoma cell lines are reported in the literature, but none has been characterized in detail. We analyzed gene expression patterns and genomic copy number variations in five putative chordoma cell lines (U-CH1, CCL3, CCL4, GB60, and CM319). We also created a new chordoma cell line, U-CH2, and provided genotypes for cell lines for identity confirmation. Our analyses revealed that CCL3, CCL4, and GB60 are not chordoma cell lines, and that CM319 is a cancer cell line possibly derived from chordoma, but lacking expression of key chordoma biomarkers. U-CH1 and U-CH2 both have gene expression profiles, copy number aberrations, and morphology consistent with chordoma tumors. These cell lines also harbor genetic changes, such as loss of p16, MTAP, or PTEN, that make them potentially useful models for studying mechanisms of chordoma pathogenesis and for evaluating targeted therapies

    Thermophysical Characterization of Potential Spacecraft Target (101955) 1999 RQ36

    Get PDF
    We report on thermal emission measurements of 1999 RQ36 from Spitzer. The derived size is in agreement with radar measurements, and we find a moderately high thermal inertia and homogeneous surface properties

    Signal inhibition by a dynamically regulated pool of monophosphorylated MAPK

    Get PDF
    MAPKs are activated by dual phosphorylation. Much of the MAPK Fus3 is monophosphorylated and acts to inhibit signaling in vivo. Computational models reveal how a kinase scaffold and phosphatase act together to dynamically regulate dual-phosphorylated and monophosphorylated MAPKs and the downstream signal.Protein kinases regulate a broad array of cellular processes and do so through the phosphorylation of one or more sites within a given substrate. Many protein kinases are themselves regulated through multisite phosphorylation, and the addition or removal of phosphates can occur in a sequential (processive) or a stepwise (distributive) manner. Here we measured the relative abundance of the monophosphorylated and dual-phosphorylated forms of Fus3, a member of the mitogen-activated protein kinase (MAPK) family in yeast. We found that upon activation with pheromone, a substantial proportion of Fus3 accumulates in the monophosphorylated state. Introduction of an additional copy of Fus3 lacking either phosphorylation site leads to dampened signaling. Conversely, cells lacking the dual-specificity phosphatase (msg5Δ) or that are deficient in docking to the MAPK-scaffold (Ste5ND) accumulate a greater proportion of dual-phosphorylated Fus3. The double mutant exhibits a synergistic, or “synthetic,” supersensitivity to pheromone. Finally, we present a predictive computational model that combines MAPK scaffold and phosphatase activities and is sufficient to account for the observed MAPK profiles. These results indicate that the monophosphorylated and dual-phosphorylated forms of the MAPK act in opposition to one another. Moreover, they reveal a new mechanism by which the MAPK scaffold acts dynamically to regulate signaling

    Site-Specific Metal Chelation Facilitates the Unveiling of Hidden Coordination Sites in an Fe II/Fe III -Seamed Pyrogallol[4]arene Nanocapsule

    Get PDF
    Under suitable conditions, C-alkylpyrogallol­[4]­arenes (PgCs) arrange into spherical metal–organic nanocapsules (MONCs) upon coordination to appropriate metal ions. Herein we present the synthesis and structural characterization of a novel FeII/FeIII-seamed MONC, as well as studies related to its electrochemical and magnetic behaviors. Unlike other MONCs that are assembled through 24 metal ions, this nanocapsule comprises 32 Fe ions, uncovering 8 additional coordination sites situated between the constituent PgC subunits. The FeII ions are likely formed by the reducing ability of DMF used in the synthesis, representing a novel synthetic route toward polynuclear mixed-valence MONCs

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software

    A Full-Genomic Sequence-Verified Protein-Coding Gene Collection for Francisella tularensis

    Get PDF
    The rapid development of new technologies for the high throughput (HT) study of proteins has increased the demand for comprehensive plasmid clone resources that support protein expression. These clones must be full-length, sequence-verified and in a flexible format. The generation of these resources requires automated pipelines supported by software management systems. Although the availability of clone resources is growing, current collections are either not complete or not fully sequence-verified. We report an automated pipeline, supported by several software applications that enabled the construction of the first comprehensive sequence-verified plasmid clone resource for more than 96% of protein coding sequences of the genome of F. tularensis, a highly virulent human pathogen and the causative agent of tularemia. This clone resource was applied to a HT protein purification pipeline successfully producing recombinant proteins for 72% of the genes. These methods and resources represent significant technological steps towards exploiting the genomic information of F. tularensis in discovery applications
    corecore