12 research outputs found

    Externally Verifiable Oblivious RAM

    Get PDF
    We present the idea of externally verifiable oblivious RAM (ORAM). Our goal is to allow a client and server carrying out an ORAM protocol to have disputes adjudicated by a third party, allowing for the enforcement of penalties against an unreliable or malicious server. We give a security definition that guarantees protection not only against a malicious server but also against a client making false accusations. We then give modifications of the Path ORAM and Ring ORAM protocols that meet this security definition. These protocols both have the same asymptotic runtimes as the semi-honest original versions and require the external verifier to be involved only when the client or server deviates from the protocol. Finally, we implement externally verified ORAM, along with an automated cryptocurrency contract to use as the external verifier

    IPDL: A Simple Framework for Formally Verifying Distributed Cryptographic Protocols

    Get PDF
    Although there have been many successes in verifying proofs of non-interactive cryptographic primitives such as encryption and signatures, formal verification of interactive cryptographic protocols is still a nascent area. While in principle, it seems possible to extend general frameworks such as Easycrypt to encode proofs for more complex, interactive protocols, a big challenge is whether the human effort would be scalable enough for proof mechanization to eventually acquire mainstream usage among the cryptography community. We work towards closing this gap by introducing a simple framework, Interactive Probabilistic Dependency Logic (IPDL), for reasoning about a certain well-behaved subset of cryptographic protocols. A primary design goal of IPDL is for formal cryptographic proofs to resemble their on-paper counterparts. To this end, IPDL includes an equational logic to reason about approximate observational equivalence (i.e., computational indistinguishability) properties between protocols. IPDL adopts a channel-centric core logic, which decomposes the behavior of the protocol into the behaviors along each communication channel. IPDL supports straight-line programs with statically bounded loops. This design allows us to capture a broad class of protocols encountered in the cryptography literature, including multi-party, reactive, and/or inductively-defined protocols; meanwhile, the logic can track the runtime of the computational reduction in security proofs, thus ensuring computational soundness. We demonstrate the use of IPDL by a number of case studies, including a multi-use, secure message communication protocol, a multi-party coin toss with abort protocol, several oblivious transfer constructions, as well as the two-party GMW protocol for securely evaluating general circuits. We provide a mechanization of the IPDL proof system and our case studies in Coq, and our code is open sourced at https://github.com/ipdl/ipdl

    IPDL: A Probabilistic Dataflow Logic for Cryptography

    Get PDF
    While there have been many successes in verifying cryptographic security proofs of noninter- active primitives such as encryption and signatures, less attention has been paid to interactive cryptographic protocols. Interactive protocols introduce the additional verification challenge of concurrency, which is notoriously hard to reason about in a cryptographically sound manner. When proving the (approximate) observational equivalance of protocols, as is required by simulation based security in the style of Universal Composability (UC), a bisimulation is typically performed in order to reason about the nontrivial control flows induced by concurrency. Unfortunately, bisimulations are typically very tedious to carry out manually and do not capture the high-level intuitions which guide informal proofs of UC security on paper. Because of this, there is currently a large gap of formality between proofs of cryptographic protocols on paper and in mechanized theorem provers. We work towards closing this gap through a new methodology for iteratively constructing bisimulations in a manner close to on-paper intuition. We present this methodology through Interactive Probabilistic Dependency Logic (IPDL), a simple calculus and proof system for specifying and reasoning about (a certain subclass of) distributed probabilistic computations. The IPDL framework exposes an equational logic on protocols; proofs in our logic consist of a number of rewriting rules, each of which induce a single low-level bisimulation between protocols. We show how to encode simulation-based security in the style of UC in our logic, and evaluate our logic on a number of case studies; most notably, a semi-honest secure Oblivious Transfer protocol, and a simple multiparty computation protocol robust to Byzantine faults. Due to the novel design of our logic, we are able to deliver mechanized proofs of protocols which we believe are comprehensible to cryptographers without verification expertise. We provide a mechanization in Coq of IPDL and all case studies presented in this work

    Owl: Compositional Verification of Security Protocols via an Information-Flow Type System

    Get PDF
    Computationally sound protocol verification tools promise to deliver full-strength cryptographic proofs for security protocols. Unfortunately, current tools lack either modularity or automation. We propose a new approach based on a novel use of information flow and refinement types for sound cryptographic proofs. Our framework, Owl, allows type-based modular descriptions of security protocols, wherein disjoint subprotocols can be programmed and automatically proved secure separately. We give a formal security proof for Owl via a core language which supports standard symmetric and asymmetric primitives, Diffie-Hellman operations, and hashing via random oracles. We also implement a type checker for Owl along with a prototype extraction mechanism to Rust, and evaluate it on 14 case studies, including (simplified forms of) SSH key exchange and Kerberos

    A Core Calculus for Equational Proofs of Cryptographic Protocols

    Get PDF
    International audienceMany proofs of interactive cryptographic protocols (e.g., as in Universal Composability) operate by proving the protocol at hand to be observationally equivalent to an idealized specification. While pervasive, formal tool support for observational equivalence of cryptographic protocols is still a nascent area of research. Current mechanization efforts tend to either focus on diff-equivalence, which establishes observational equivalence between protocols with identical control structures, or require an explicit witness for the observational equivalence in the form of a bisimulation relation. Our goal is to simplify proofs for cryptographic protocols by introducing a core calculus, IPDL, for cryptographic observational equivalences. Via IPDL, we aim to address a number of theoretical issues for cryptographic proofs in a simple manner, including probabilistic behaviors, distributed message-passing, and resource-bounded adversaries and simulators. We demonstrate IPDL on a number of case studies, including a distributed coin toss protocol, Oblivious Transfer, and the GMW multi-party computation protocol. All proofs of case studies are mechanized via an embedding of IPDL into the Coq proof assistant

    Viaduct: An Extensible, Optimizing Compiler for Secure Distributed Programs (Technical Report)

    Get PDF
    Modern distributed systems involve interactions between principals with limited trust, so cryptographic mechanisms are needed to protect confidentiality and integrity. At the same time, most developers lack the training to securely employ cryptography. We present Viaduct, a compiler that transforms high-level programs into secure, efficient distributed realizations. Viaduct\u27s source language allows developers to declaratively specify security policies by annotating their programs with information flow labels. The compiler uses these labels to synthesize distributed programs that use cryptography efficiently while still defending the source-level security policy. The Viaduct approach is general, and can be easily extended with new security mechanisms. Our implementation of the Viaduct compiler comes with an extensible runtime system that includes plug-in support for multiparty computation, commitments, and zero-knowledge proofs. We have evaluated the system on a set of benchmarks, and the results indicate that our approach is feasible and can use cryptography in efficient, nontrivial ways

    Symbolic Proofs for Lattice-Based Cryptography

    Get PDF
    International audienceSymbolic methods have been used extensively for proving security of cryptographic protocols in the Dolev-Yao model, and more recently for proving security of cryptographic primitives and constructions in the computational model. However, existing methods for proving security of cryptographic constructions in the computational model often require significant expertise and interaction, or are fairly limited in scope and expressivity. This paper introduces a symbolic approach for proving security of cryptographic constructions based on the Learning With Errors assumption (Regev, STOC 2005). Such constructions are instances of lattice-based cryptography and are extremely important due to their potential role in post-quantum cryptography. Following (Barthe, Grégoire and Schmidt, CCS 2015), our approach combines a computational logic and deducibility problems-a standard tool for representing the adversary's knowledge, the Dolev-Yao model. The computational logic is used to capture (indistinguishability-based) security notions and drive the security proofs whereas deducibility problems are used as side-conditions to control that rules of the logic are applied correctly. We then use AutoLWE, an implementation of the logic, to deliver very short or even automatic proofs of several emblematic constructions, including CPA-PKE (Gentry et al., STOC 2008), (Hierarchical) Identity-Based Encryption (Agrawal et al. Eurocrypt 2010), Inner Product Encryption (Agrawal et al. Asiacrypt 2011), CCA-PKE (Micciancio et al., Eurocrypt 2012). The main technical novelty beyond AutoLWE is a set of (semi-)decision procedures for deducibility problems, using extensions of Gröbner basis computations for subalgebras in the (non-)commutative setting (instead of ideals in the commutative setting). Our procedures cover the theory of matrices, which is required for lattice-based assumption, as well as the theory of non-commutative rings, fields, and Diffie-Hellman exponentiation, in its standard, bilinear and mul-tilinear forms. Additionally, AutoLWE supports oracle-relative assumptions , which are used specifically to apply (advanced forms of) the Leftover Hash Lemma, an information-theoretical tool widely used in lattice-based proofs

    Equational Reasoning for Verified Cryptographic Security

    No full text
    150 pagesModern software systems today have increasingly complex security requirements – such as supporting privacy-preserving computations, or resistance against quantum attackers – that are fulfilled by advanced forms of cryptography. At the same time, these advanced forms of cryptography often have subtle security proofs that require careful auditing. To ensure security, it is thus crucial to formally verify the security of the underlying cryptography, and to do so in a manner that is approachable to cryptographers. This thesis explores the use of equational reasoning to conduct machine-checked security proofs. Equational reasoning is pervasive in cryptography, as it underlies the concepts of game-hopping hybrids and the simulation paradigm; thus, optimizing formal tools for equational reasoning delivers machine-checked proofs closer to their on-paper counterparts.We first present AutoLWE, a prover for cryptographic primitives that sup- ports reasoning about lattices. AutoLWE is built around deducibility, which (semi-) automatically applies hardness assumptions by partitioning the security game into an application of the hardness assumption with a context. Using AutoLWE, we deliver very short proofs of several representative constructions, including Public-Key Encryption, Identity-Based Encryption, and Inner Product Encryption. We then present IPDL, a simple calculus and equational logic for distributed, interactive cryptographic protocols in the computational model. The purpose of IPDL is to prove simulation results between real and idealized protocols in the style of Universal Composability (UC) [Can01]. IPDL does so by restricting its attention to straight-line protocols, a particularly simple but expressive subset of protocols. Using IPDL, we deliver short proofs of multiple case studies, including a semi-honest multiparty computation protocol over general circuits [GMW87], and an n-party coin toss protocol [Blu83]

    Developing Interactive Antimicrobial Stewardship and Infection Prevention Curricula for Diverse Learners: A Tailored Approach.

    No full text
    BACKGROUND: To impart principles of antimicrobial stewardship (AS) and infection prevention and control (IPC), we developed a curriculum tailored to the diverse aptitudes of learners at our medical center. METHODS: We integrated case-based modules, group learning activities, smartphone applications (apps), decision support tools, and prescription audit and feedback into curricula of the medical school, medicine residency program, infectious diseases (ID) fellowship program, and hospital medicine program operations. Interventions were implemented in 2012-2016 using a quasi-experimental before-and-after study design, and this was assessed using pre- and postintervention surveys or audit of antibiotic prescriptions. RESULTS: Over 180 medical students participated in the AS and IPC seminars. After smartphone app introduction, 69% reported using the app as their preferred source of antibiotic information. Approximately 70% of students felt comfortable prescribing antibiotics for a known infection compared with 40% at baseline ( CONCLUSIONS: All 5 interventions addressed learning objectives and knowledge gaps and are applicable across a range of environments. Evaluating long-term impact of our curriculum is the focus of future study
    corecore