
30

A Core Calculus for Equational Proofs of Cryptographic
Protocols
JOSHUA GANCHER, Carnegie Mellon University, USA

KRISTINA SOJAKOVA, INRIA, France

XIONG FAN, Rutgers University, USA

ELAINE SHI, Carnegie Mellon University, USA

GREG MORRISETT, Cornell University, USA

Many proofs of interactive cryptographic protocols (e.g., as in Universal Composability) operate by proving

the protocol at hand to be observationally equivalent to an idealized specification. While pervasive, formal tool

support for observational equivalence of cryptographic protocols is still a nascent area of research. Current

mechanization efforts tend to either focus on diff-equivalence, which establishes observational equivalence

between protocols with identical control structures, or require an explicit witness for the observational

equivalence in the form of a bisimulation relation.

Our goal is to simplify proofs for cryptographic protocols by introducing a core calculus, IPDL, for cryp-

tographic observational equivalences. Via IPDL, we aim to address a number of theoretical issues for cryp-

tographic proofs in a simple manner, including probabilistic behaviors, distributed message-passing, and

resource-bounded adversaries and simulators. We demonstrate IPDL on a number of case studies, including a

distributed coin toss protocol, Oblivious Transfer, and the GMW multi-party computation protocol. All proofs

of case studies are mechanized via an embedding of IPDL into the Coq proof assistant.

CCS Concepts: • Security and privacy→ Logic and verification; • Theory of computation→ Equational
logic and rewriting.

Additional Key Words and Phrases: cryptographic protocols, equational reasoning, observational equivalence

ACM Reference Format:
Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett. 2023. A Core Calculus for

Equational Proofs of Cryptographic Protocols. Proc. ACM Program. Lang. 7, POPL, Article 30 (January 2023),

40 pages. https://doi.org/10.1145/3571223

1 INTRODUCTION
An important area in the design of secure systems is the use of computer-aided proofs for certifying
the design of cryptographic protocols [Barbosa et al. 2021a]. As new and complex cryptographic

mechanisms become deployed, it becomes increasingly important to mechanize security proofs in

order to rule out unforeseen attacks not captured in on-paper proof developments.

While a number of sophisticated protocols have been proven secure using existing tools [Barthe

et al. 2011, 2015; Blanchet 2006, 2013; Lochbihler and Sefidgar 2018; Meier et al. 2013; Petcher and

Morrisett 2015], work to mechanize proofs for distributed message-passing protocols in the style

of Universal Composability (UC) [Canetti 2000] is only in its initial stages [Barbosa et al. 2021b;

Canetti et al. 2019; Lochbihler et al. 2019]. Since UC provides an extremely expressive and general

Authors’ addresses: Joshua Gancher, Carnegie Mellon University, USA; Kristina Sojakova, INRIA, France; Xiong Fan, Rutgers

University, USA; Elaine Shi, Carnegie Mellon University, USA; Greg Morrisett, Cornell University, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART30

https://doi.org/10.1145/3571223

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

https://doi.org/10.1145/3571223
https://doi.org/10.1145/3571223

30:2 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

framework for defining the security of protocols in a modular way, it has the potential to serve as a

common framework for verified security proofs across cryptographic domains.

Challenge for Verification: Observational Equivalence. In UC and related frameworks [Maurer

2012], cryptographic protocols are judged secure when they are judged observationally equivalent
to an idealization which guarantees security using a trusted third party. Observational equivalence

of protocols is ubiquitous in cryptography, as it provides a uniform framework for a broad spectrum

of security properties, easily capturing privacy, integrity, and availability.

However, message-passing protocols pose semantic challenges for proving observational equiva-

lence, due to the presence of distributed computations and interactivity. Distributed protocols raise

issues of nondeterminism if two parties wish to concurrently send messages, while interactivity

requires observational equivalence to be established using bisimulations on the protocol states,

drastically raising the proof effort.

To date, these added complexities have not yet been fully addressed by verification methods. Prior

verification efforts are either libraries [Canetti et al. 2019; Lochbihler et al. 2019] based on sequential

program logics [Barthe et al. 2011; Lochbihler and Sefidgar 2018; Petcher and Morrisett 2015], which

require explicit bisimulation witnesses, or are based on symbolic model checking [Blanchet 2013;

Meier et al. 2013], or specialized security-preserving program transformations [Blanchet 2006],

lacking enough expressivity to encode observational equivalences for general classes of message-

passing systems.

Equational Reasoning for Protocols. In this paper, we address this gap in the literature by in-

troducing a core language, IPDL (standing for Interactive Probabilistic Dependency Logic), for

mechanizing observational equivalences between message-passing protocols. By designing an

equational proof system for equivalences of interactive protocols, we deliver new, simplified proofs

of protocol security in a style similar to UC without requiring hand-written bisimulation relations.

The core idea of IPDL is that while distributed message-passing can in general introduce a

number of complexities due to scheduling, these issues do not typically arise in cryptographic

protocols. Accordingly, we restrict our attention to the well-behaved (but still expressive) subset of

confluent protocols, which are guaranteed to not introduce races due to scheduling. By restricting

our attention to confluent protocols, we obtain equational proof principles which would not be

sound in the more general setting.

We mechanize the equational logic of IPDL and demonstrate it on a number of case studies,

including secure communication protocols employing encryptions and Diffie-Hellman key ex-

change, protocols for Oblivious Transfer [Goldreich et al. 1987], the GMW protocol for secure

two-party computation [Goldreich et al. 1987], and a multi-party protocol for secure randomness

generation [Blum 1983]. All proofs are written in a purely equational style, without requiring

explicit bisimulation relations. Our proof developments are open-source.
1

While we present IPDL through a stand-alone formalization and mechanization, we do not

intend for IPDL to capture all desirable proof strategies in cryptography. Indeed, our confluent

semantics and equational proof techniques are likely to excel “on top” of a lower-level probabilistic

program logic, such as EasyCrypt [Barthe et al. 2011]. Indeed, EasyCrypt could be used to validate

lower-level probabilistic reasoning steps currently out of scope for IPDL, while IPDL could handle

all high-level equational reasoning for message passing.

1
https://github.com/ipdl/ipdl

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

https://github.com/ipdl/ipdl

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:3

1.1 Contributions
• We introduce IPDL, a core language for distributed, interactive message-passing in crypto-

graphic protocols. IPDL is packaged with an equational logic for protocols, enabling simple,

high-level proofs without explicit bisimulations.

• We prove the equational logic of IPDL sound in the computational model: informally, whenever

the logic proves that two families of protocols (indexed by the security parameter) are

approximately equivalent, then no probabilistic polynomial-time distinguisher can distinguish

them with greater than negligible error.

• We mechanize the core logic IPDL in Coq, and demonstrate it on a number of case studies,

including basic communication and authentication protocols, a multi-party protocol for

secure randomness generation [Blum 1983], and the GMW protocol for two-party computa-

tion [Goldreich et al. 1987].

2 RELATEDWORK
EasyCrypt [Barthe et al. 2011], CryptHOL [Lochbihler and Sefidgar 2018], and FCF [Petcher and

Morrisett 2015] are all probabilistic program logics for sequential programs.While very expressive for

probabilistic reasoning, these tools by design provide no built-in support for interactive protocols

with distributed message-passing behaviors. While a number of interactive protocols have been

proven secure in these tools [Butler et al. 2020; Defrawy and Pereira 2019], these proof efforts

employ ad-hoc techniques for reasoning about message passing.

To make message passing less ad-hoc, EasyUC [Canetti et al. 2019] for EasyCrypt, and the

Constructive Cryptography effort for CryptHOL [Lochbihler et al. 2019] both encode general forms

of interactive message passing into their ambient program logics. However, neither tool provides

sophisticated proof techniques for conducting equivalence proofs, requiring the user to hand-write

tedious bisimulation relations, which does not scale for larger protocols. Additionally, [Barbosa et al.

2021b] work to encode UC proofs in a modular fashion in EasyCrypt, but still rely on bisimulations

for basic proof steps. The purpose of IPDL is, in part, to eliminate such hand-written bisimulations.

CryptoVerif [Blanchet 2006] is a tool for equivalence-based computational reasoning for security

protocols in which parties communicate over fully untrusted networks asynchronously. While

excellent at semi-automated proofs for privacy and authentication properties, CryptoVerif cannot

express observational equivalences between dissimilar protocols, nor reason compositionally in the

sense of embedding security proofs for subprotocols into larger proof developments. In contrast,

IPDL directly encodes observational equivalences in a modular way.

Squirrel [Baelde et al. 2021] and its associated BC logic [Bana and Comon-Lundh 2014] proves

similar properties to CryptoVerif and related symbolic tools [Blanchet 2013; Meier et al. 2013]

through a first-order logic sound against polynomial time adversaries. While Squirrel does allow

for diff-equivalence, which establishes observational equivalence between protocols with identical

control structures, it cannot establish modular observational equivalences between dissimilar

protocols. Indeed, both Squirrel and CryptoVerif assume that the prover knows the entire protocol

all at once, which is incompatible with modular proofs.

Both Squirrel and CryptoVerif assume that protocol participants only communicate through

the adversary, who controls the untrusted network. Through arbitrary manipulation of channels,

IPDL can express many more kinds of dataflow in protocols, such as ideal communication channels

between parties and functionalities. Indeed, our main case studies (such as the GMW protocol [Gol-

dreich et al. 1987]) cannot even be expressed in Squirrel or Cryptoverif, due to a lack of generality

in communication topology. We believe that IPDL sits in a sweet spot of modularity between

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:4 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

expressive tools requiring explicit bisimulations (EasyUC and the CryptHOL-based framework)

and tools for easy whole-protocol analyses (CryptoVerif and Squirrel).

Tamarin [Meier et al. 2013], Proverif [Blanchet 2013], and others [Bhargavan et al. 2021; Cremers

2008] are symbolic [Dolev and Yao 1983] protocol analysis tools, which abstract cryptographic

mechanisms into term algebras. As described by Squirrel [Baelde et al. 2021], symbolic tools

enumerate what actions attackers may do, while computational tools (including IPDL) state what

the attacker cannot do. Thus, the computational model subsumes the symbolic one, and does not

carry a risk that the attacker is not modeled with enough computational power. While a significant

line of work has proven that the symbolic model is sufficient to guarantee computational soundness

under certain conditions [Abadi and Rogaway 2002; Backes et al. 2012; Cortier and Warinschi 2011],

such arguments require intricate completeness arguments not required by IPDL.

IPDL rests upon a long lineage of using observational equivalences to model cryptographic

protocol security, both in the symbolic setting [Abadi and Rogaway 2002; Blanchet 2013; Lowe

1996; Meier et al. 2013; Schneider 1996] and in the computational one [Backes et al. 2007; Baelde

et al. 2021; Canetti 2000]. The main novelty of IPDL is enabling computationally sound formal

proofs of observational equivalence between cryptographic protocols without any explicit use of

bisimulation relations.

ILC [Liao et al. 2019] uses programming language techniques such as affine typing to capture

the semantics of Universal Composability [Canetti 2000] faithfully. Through two restrictions –

processes may only send a single message after receiving a single message, and no two processes

may listen on the same channel – ILC guarantees confluence, as is claimed by the native semantics

of Universal Composability. ILC’s main contribution is its core language, and does not deliver any

proof methods for establishing observational equivalences. In contrast, IPDL makes a different set

of restrictions to guarantee confluence (blocking reads, rather than single messages), and is attached

to an equational proof system for protocol equivalence. Additionally, via its “choice” construct,

protocols in ILC may make use of nontrivial timing information, such as deciding what to do next

based on which channel receives input. IPDL explicitly rules out dependence on timing information

in order to achieve simple equational rules.

Pirouette [Hirsch and Garg 2022] is a language for higher-order choreographies, which give a

similarly concise syntax for specifying distributed protocols. Additionally similar to IPDL, Pirouette

contains an equational proof system for reasoning about protocol behaviors. While the focus

for Pirouette is higher-order programming of distributed protocols with endpoint projections to
individual components, the focus for IPDL is using the proof system to conduct computationally

sound reasoning for cryptographic protocols.

3 OVERVIEW OF IPDL
Before we turn to the formal details of IPDL, we outline the main ideas behind expressing security

of protocols and proofs in IPDL.

3.1 Background on Simulation-Based Security
To motivate our setting of distributed cryptographic protocols, we give some details about UC-style

security modeling independent of any formal framework. Simulation-based security in the style

of UC [Canetti 2000] and Constructive Cryptography [Maurer 2012] provides an expressive and

general way to model security for distributed cryptographic protocols, such as secure multi-party

computation (MPC) [Lindell 2020]. The core idea is that cryptographic protocols 𝜋 are modeled as

open, message-passing systems of parties and functionalities, i.e., services assumed by the protocol

to be secure, such as an authenticated communication channel.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:5

Interfaces. Virtually all protocols have two disjoint interfaces with the external world: an en-
vironmental interface, and an attacker interface (also called the backdoor in UC [Canetti 2000]).

The environmental interface is used to model the high-level I/O of the protocol, and is used by the

parties; e.g., the inputs and outputs of a particular circuit for MPC, or the input votes and output

decision of a secure voting protocol. In contrast, the attacker interface specifies how an attacker

may subvert specific implementation details of the protocol, such as interacting with corrupted

parties, or eavesdropping on communication channels.

Protocol Security. We define security for protocols 𝜋 by comparing them to idealizations Ideal

in which all computations are replaced by a trusted functionality that provides security by fiat.

The external interfaces of 𝜋 and Ideal are identical, but the attacker interfaces are not. Typically,

the attacker may corrupt parties and eavesdrop on intermediate communications in 𝜋 , while in

Ideal the attacker is severely limited, such as only deciding whether or not the computation may

complete. To compare the two protocols, we ask for a simulator Sim which converts the attacker’s
interface of Ideal to that of 𝜋 . The simulator’s role is to demonstrate that attacks in 𝜋 are no more

powerful than attacks in Ideal; indeed, this is the case if no attacker can tell the difference between

interacting with 𝜋 and Sim + Ideal, where + connects subcomponents by interface composition.

We formalize this idea by stating that 𝜋 realizes Ideal if 𝜋 ≈obs Sim + Ideal, where ≈obs expresses
observational equivalence. Following the Dummy Adversary Theorem in UC [Canetti 2000], it is

fully general to allow the environment (supplying high-level inputs and outputs to 𝜋 and Ideal)

to coincide with the attacker (attacking either 𝜋 or Sim + Ideal). In the cryptographic domain,

observational equivalence is expressed through resource-bounded, probabilistic machines that output

a decision Boolean.

Proof Strategies. Proofs of security for complex protocols are rarely conducted in one single step.

Instead, cryptographers use hybrids, or intermediate protocol equivalences, which allow the proof

to be written modularly. Prototypically, proofs of security appear as chains of exact equivalences
and approximate congurence steps:

𝜋 = 𝑅1 + 𝐻1 ≈ 𝑅1 + 𝐻 ′1 = · · · = 𝑅𝑘 + 𝐻𝑘 ≈ 𝑅𝑘 + 𝐻 ′𝑘 = Ideal, (1)

where each 𝑅𝑖 is an intermediate reduction, and each pair (𝐻𝑖 , 𝐻 ′𝑖) is an indistinguishability as-
sumption of the form 𝐻𝑖 ≈ 𝐻 ′𝑖 . In this format, each exact equivalence = is semantic equivalence

of the two protocols, while each approximate equivalence ≈ is simply an application of a single

indistinguishability assumption, using the fact that ≈ is a congruence for +. Crucially, the above
proof strategy does not involve any cryptographic reasoning other than proper identification of

the reductions 𝑅𝑖 and assumptions 𝐻𝑖 ≈ 𝐻 ′𝑖 . All nontrivial proof effort is discharged in proving

semantic equivalences =, which in general require bisimulations, i.e., relational invariants across
the states of the two protocols in question.

3.2 Key Ideas of IPDL
Motivated by UC-style security, the purpose of IPDL is to enable cryptographers to state and prove

observational equivalences, such as those in Equation 1, as easily as possible.

Channels and Reactions. As discussed in Section 3.1, UC-style proofs typically require hand-

written bisimulations to prove one protocol semantically equivalent to another. While expressive,

bisimulations are tedious to write and too low-level for serious proof efforts, thus diverting the proof

effort away from the high-level security proof. We eliminate the need for hand-written bisimulations

by choosing a language for protocols which is simultaneously expressive and well-behaved enough

to admit equational reasoning principles.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:6 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

protocol P

[
{In𝑖 : {0, 1}𝐿 (_) }𝑞 (_)𝑖=1

, {Out𝑖 : {0, 1}𝐿 (_) }𝑞 (_)𝑖=1
, {Leak𝑖 : {0, 1}𝐶 (_) }𝑞 (_)𝑖=1

]
B

new Key : {0, 1}len𝐾 (_) in

new {Ctxt𝑖 : {0, 1}𝐶 (_) }𝑞 (_)𝑖=1
in(

Key B samp (uniflen𝐾 (_))
)
| |

𝑞 (_)

| |
𝑖=1

(
Ctxt𝑖 B 𝑥 ← read In𝑖 ; 𝑘 ← read Key; samp (enc(𝑘, 𝑥))

)
| |

𝑞 (_)

| |
𝑖=1

(
Out𝑖 B 𝑐 ← read Ctxt𝑖 ; 𝑘 ← read Key; ret (dec(𝑘, 𝑐))

)
| |

𝑞 (_)

| |
𝑖=1

(
Leak𝑖 B read Ctxt𝑖

)
Fig. 1. Simple encryption protocol in IPDL.

At its core, IPDL is a process calculus for describing networks of interacting probabilistic compu-

tations, communicating via write-once channels. The basic computational unit in IPDL is channel
assignment (𝑐 B 𝑅), which assigns the reaction 𝑅 to channel 𝑐 . Reactions are simple monadic

programs which may read from other channels, perform probabilistic sampling, and branch with if

statements. We enforce through typing that channels in IPDL carry one unique reaction.

Reactions interact through protocols 𝑃 , which, other than channel assignment, are built out of

parallel composition 𝑃 | | 𝑄 and local channel generation, new 𝑐 : 𝜏 in 𝑃 , where 𝜏 is a data type. To

ensure parity with semantics for computational cryptography, all data types represent bitstrings of

a given length.

Protocol Families. Throughout, we make extensive use of protocol families, i.e., structured families

of protocols {𝑃𝑖 }𝑁𝑖=1, indexed by natural numbers. Given a family of protocols {𝑃𝑖 }𝑖 , we write | |𝑖 𝑃𝑖
for the protocol 𝑃1 | | . . . | | 𝑃𝑁 . Similarly, we write new {c𝑖 : 𝜏}𝑁𝑖=1 in 𝑃 for the protocol given by

new c1 : 𝜏 in . . . new c𝑁 : 𝜏 in 𝑃 . We do not give explicit syntax for protocol families, instead

deferring their construction to the meta-language through the above abbreviations.

IPDL does not have an explicit construct for unbounded recursion. Since cryptographic protocols

are typically constrained to run in polynomial time, virtually all candidate uses of recursion can be

unfolded into a protocol family bounded by a polynomial in the security parameter.

Similarly, IPDL’s assumption that all channels are write-once is not a practical restriction, since

any channel 𝑜 that carries multiple succesive messages can be split into a family {𝑜𝑖 } of channels,
again bounded by a polynomial in the security parameter.

3.3 Example: Secure Message Communication
We demonstrate IPDL on a simple example using encryption to communicate 𝑞 secret messages

over an authenticated (but not private) communication network. Assuming that a key for symmetric

encryption has been distributed ahead of time, the sender may send encrypted messages over the

network, which the receiver will be able to decrypt correctly. We assume the attacker may view

the in-flight (encrypted) messages.

We model this protocol (simplified for brevity) in Figure 1, where all channel names are uppercase

to enhance readability. Throughout, _ ∈ N is the security parameter, used to define computational

soundness. The protocol operates as follows: it is parameterized by three collections of free channels,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:7

{In𝑖 }, {Out𝑖 }, and {Leak𝑖 }. The channels In𝑖 and Out𝑖 are the inputs and outputs of the sender

and receiver respectively, while channels Leak𝑖 carry the in-flight messages observable by the

adversary. Through typing, we will obtain thatOut𝑖 and Leak𝑖 are outputs of the protocol, while In𝑖

are inputs. All channels are typed with a length of values they carry. First, the protocol generates

local channels: Key for key and the family {Ctxt𝑖 } for ciphertexts. We choose the key uniformly by

assigning Key the reaction that samples from uniflen𝐾 (_) , where len𝐾 (_) is the length of the key.

To generate a ciphertext, we assign Ctxt𝑖 the reaction enc(𝑘, 𝑥), where 𝑘 is read from Key, and 𝑥

is read from In𝑖 . We leak the value of Ctxt𝑖 to the adversary along channel Leak𝑖 , and output the

decryption of Ctxt𝑖 under 𝑘 along channel Out𝑖 .

While the protocol in Figure 1 is written monolithically, realistic developments in IPDL define

the code for each party separately. This is easy to do using the parallel composition operator | | that
supports arbitrary interleaving of protocols. Indeed, Figure 1 is derived from a simplification of

the corresponding case study in Section 5, which is specified via two parties, the sender and the

receiver, and two functionalities: an authenticated network and a trusted key distribution service.

Confluence via Blocking Reads. Crucially, the semantics of read(𝑐) in reactions is to block until a

value is available along 𝑐 . This is in contrast to UC [Canetti 2000], which operates under an actor

model: in UC, protocol code can check for the absence of a message, which is disallowed in IPDL.

This subtle difference in expressiveness has large consequences for the semantics of protocols.

Since protocols in UC may make decisions based on the absence of a message, the order in which

messages are scheduled may influence party state; in turn, any presence of nondeterminism in

scheduling is a potential security leak, and has to be ruled out by enforcing a programming model

that only allows one in-flight message to exist at a time. While well-understood formally [Canetti

et al. 2019; Liao et al. 2019], this programming model introduces subtle complexities around timing

that complicate both protocol design and security proofs.

In IPDL, we instead prove a confluence theorem, guaranteeing that the order in which messages

are delivered (e.g., whether Out𝑖 or Leak𝑖 fires first) cannot affect any data present in the protocol.

Through confluence, we are able to express protocols in a precise, simple way, avoiding all low-level

issues around the sensitivity of timing in the semantics.

While our case studies in Section 5 show that IPDL is expressive enough to capture a wide variety

of cryptographic protocols, there are other protocols which are currently out of scope. Consensus-

like protocols such as PBFT [Castro et al. 1999] exhibit threshold behaviors (do X if 𝑛 out of𝑚

messages are received), which do not currently fit into the protocol formalism of IPDL. However, it

is likely possible to expand the confluence theorem of IPDL to include theshold behaviors.

Equational Reasoning. The unique structure of protocols in IPDL is designed to enable easy

equational proofs of observational equivalence. In line with the proof skeleton in Equation 1, we

have two judgments for observational equality. First is exact equivalence, Δ ⊢ 𝑃 = 𝑄 , where Δ is a

channel context, specifying free channels common to both 𝑃 and 𝑄 . Intuitively, Δ ⊢ 𝑃 = 𝑄 holds

when 𝑃 and 𝑄 coincide semantically, guaranteeing that no observer, regardless of resources, may

distinguish them. To establish exact equivalences, we additionally use the judgment Δ, Γ ⊢ 𝑅1 = 𝑅2
for reactions, where Γ is a type context for variables.

2

Approximate equivalence is captured through comparing two families of IPDL protocols, {𝑃_}_
and {𝑄_}_ . Informally, we say that {𝑃_}_ ≈_ {𝑄_}_ when no polynomial time distinguisher can

distinguish 𝑃_ from𝑄_ with probability greater than a negligible function of _. Formally, we express

this through the judgment Δ ⊢ 𝑃_ ≈(𝑘,𝑙)_
𝑄_ . Here, 𝑘 and 𝑙 are used to bound the size of the proof,

2
Formally, we attach extra typing information to the judgments for both exact and approximate equivalences. We suppress

them here for readability.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:8 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

used for computational soundness: 𝑘 bounds the number of approximate steps used, while 𝑙 bounds

the size of contexts used for approximate equivalences. As noted in Section 3.1, the bulk of security

proofs establish exact equivalences, while approximate equivalences are mostly used to apply

indistinguishability assumptions.

We will now demonstrate equational reasoning in IPDL by proving that the protocol in Figure 1

does not induce any dataflow from In𝑖 to Leak𝑖 . We do so by establishing an approximate equivalence

to another protocol where this is guaranteed syntactically.

Decryption Soundness. The first step of the proof is to appeal to the decryption soundness assump-

tion, which guarantees that encrypted values always decrypt correctly: dec(𝑘, enc(𝑘, 𝑥)) = 𝑥 . We

express this assumption in IPDL as the following exact equivalence axiom (with types suppressed):

K, I,C,O ⊢
(
𝜋 | | (O B (𝑐 ← read C; 𝑘 ← read K; ret (dec(𝑘, 𝑐)))

)
=
(
𝜋 | | (O B read I)),

where 𝜋 is the protocol

(K B samp (uniflen𝐾 (_))) | |
(
C B 𝑥 ← read I; 𝑘 ← read K; samp (enc(𝑘, 𝑥))

)
.

Intuitively, the above equivalence states that whenever the key K is correctly sampled, any reaction

which decrypts an encryption of message I may be replaced with a reaction which reads directly

from I.

Since in IPDL protocol equivalence is a congruence for the connectives | | and new, we apply the

above axiom to Figure 1 𝑞 times to replace the definitions of Out𝑖 with | |𝑞 (_)𝑖=1
(Out𝑖 B read In𝑖).

Structural Rules. We may now apply some equational simplifications to the protocol. Since the

channel Out𝑖 no longer refers to encryption, the locally generated channel Ctxt𝑖 that performs

the ciphertext sampling is only used in one place: the leakage channel Leak𝑖 . In this case, we are

allowed to fold the definition of Ctxt𝑖 into Leak𝑖 , thereby removing this intermediate computation:

𝑞 (_)

| |
𝑖=1

(
Leak𝑖 B 𝑥 ← read In𝑖 ; 𝑘 ← read Key; samp (enc(𝑘, 𝑥))

)
.

Inlining channel definitions in this way is only permitted in certain special circumstances: e.g., if
the channel being inlined is not used in the rest of the protocol, as in this case, or if it does not use

any probabilistic sampling.

Semantic Security. In the next step we employ a standard variant of semantic security: if the key
K is secret, observing 𝑞 encryptions of arbitrary messages is equivalent to observing 𝑞 encryptions

of a fixed message, e.g., the all-zero message of length 𝐿. We express this in IPDL through the

axiom for approximate equivalence in Figure 2. To use this axiom, we move the composition

. . . | | | |𝑞 (_)
𝑖=1
(Out𝑖 B read In𝑖) out of the scope of the local channel new K : {0, 1}len𝐾 (_) in . . .; we

can do this since the channels Out𝑖 no longer refer to Key. The protocol | |𝑞 (_)
𝑖=1
(Out𝑖 ::= read In𝑖)

is thus our reduction, and the axiom in Figure 2 is the indistinguishability assumption. Taking

the bottom protocol from Figure 2 and moving the channels Out𝑖 back into the scope of new K :

{0, 1}len𝐾 (_) in . . . yields the protocol in Figure 3. The leaked ciphertexts are now independent of

the values of In𝑖 , from which security follows.

4 CORE LANGUAGE AND LOGIC
IPDL is built from two main layers: protocols are networks of interacting channels, each of which is

assigned a reaction: a simple monadic, probabilistic program that may read from other channels.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:9

protocol EncReal

[
{I𝑖 : {0, 1}𝐿 (_) }𝑞 (_)𝑖=1

, {O𝑖 : {0, 1}𝐶 (_) }𝑞 (_)𝑖=1

]
B

new K : {0, 1}len𝐾 (_) in(
K B samp (uniflen𝐾 (_))

)
| |

𝑞 (_)

| |
𝑖=1

(
O𝑖 B 𝑥 ← read I𝑖 ; 𝑘 ← read K; samp (enc(𝑘, 𝑥))

)
≈_
protocol EncZero

[
{I𝑖 : {0, 1}𝐿 (_) }𝑞 (_)𝑖=1

, {O𝑖 : {0, 1}𝐶 (_) }𝑞 (_)𝑖=1

]
B

new K : {0, 1}len𝐾 (_) in(
K B samp (uniflen𝐾 (_))

)
| |

𝑞 (_)

| |
𝑖=1

(
O𝑖 B 𝑥 ← read I𝑖 ; 𝑘 ← read K; samp (enc(𝑘, 0𝐿))

)
Fig. 2. Semantic Security in IPDL.

protocol P

[
{In𝑖 : {0, 1}𝐿 (_) }𝑞 (_)𝑖=1

, {Out𝑖 : {0, 1}𝐿 (_) }𝑞 (_)𝑖=1
, {Leak𝑖 : {0, 1}𝐶 (_) }𝑞 (_)𝑖=1

]
B

new Key : {0, 1}len𝐾 (_) in(
Key B samp (uniflen𝐾 (_))

)
| |

𝑞 (_)

| |
𝑖=1

(
Out𝑖 B read In𝑖

)
| |

𝑞 (_)

| |
𝑖=1

(
Leak𝑖 B _← read In𝑖 ; 𝑘 ← read Key; samp (enc(𝑘, 0𝐿))

)
Fig. 3. The result of applying equational reasoning in IPDL to the encryption protocol in Figure 1. No dataflow

dependency exists between In𝑖 and Leak𝑖 .

4.1 Core Syntax
The syntax of IPDL is outlined in Figure 4, and is parameterized by a user-defined signature, Σ:

Definition 4.1 (Signature). An IPDL signature Σ is a collection of:

• type symbols, t;

• typed function symbols, f : 𝜏 → 𝜏 ′; and
• typed distribution symbols, d : 𝜏 → 𝜏 ′.

We let Σ be implicitly parameterized throughout our formal developments. We assume a minimal

set of data types, including the unit type 1, Booleans, products, as well as arbitrary type symbols t,

drawn from the signature Σ.
Expressions are used for non-probabilistic computations, and are standard. All values in IPDL

are bitstrings of a length given by data types, so we annotate the operations fst𝜏1×𝜏2 and snd𝜏1×𝜏2
with the type of the pair to determine the index to split the pair into two.

Function symbols f must appear in the signature Σ, and are assigned a typing Σ ⊢ f : 𝜏 → 𝜏 ′. We

similarly assume a set of typed distribution symbols in Σ, which at least contains flip, returning

bool.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:10 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

Data Types 𝜏 ::= 1 | bool | 𝜏 × 𝜏 | t
Expressions 𝑒 ::= () | true | false | f 𝑒

| (𝑒1, 𝑒2) | fst𝜏1×𝜏2 𝑒 | snd𝜏1×𝜏2 𝑒
Distributions 𝐷 ::= flip | d 𝑒
Channels 𝑖, 𝑜, 𝑐

Reactions 𝑅, 𝑆 ::= ret (𝑒) | samp (𝐷) | read 𝑐
| if 𝑒 then 𝑅1 else 𝑅2 | 𝑥 : 𝜏 ← 𝑅; 𝑆

Protocols 𝑃,𝑄 ::= 𝑜 B 𝑅 | 𝑃 | | 𝑄 | new 𝑜 : 𝜏 in 𝑃

Channel Sets 𝐼 ,𝑂 ::= {𝑐1, . . . , 𝑐𝑛}
Channel Contexts Δ ::= · | Δ, 𝑐 : 𝜏
Type Contexts Γ ::= · | Γ, 𝑥 : 𝜏

Expression Typing Γ ⊢ 𝑒 : 𝜏
Distribution Typing Γ ⊢ 𝐷 : 𝜏

Reaction Typing Δ; Γ ⊢ 𝑅 : 𝐼 → 𝜏

Protocol Typing Δ ⊢ 𝑃 : 𝐼 → 𝑂

Fig. 4. Syntax of IPDL.

As mentioned above, reactions are monadic programs which may return expressions, sample

from distributions, read from channels, branch on a value of type bool, and sequentially compose.

Protocols in IPDL are given by a simple but expressive syntax: channel assignment 𝑜 B 𝑅

assigns the reaction 𝑅 to channel 𝑜 ; parallel composition 𝑃 | | 𝑄 allows 𝑃 and 𝑄 to freely interact

concurrently; and channel generation new 𝑜 : 𝜏 in 𝑃 creates a new, internal channel for use in 𝑃 .

We identify protocols up to alpha equivalence of channels created by new.

Typing. We restrict our attention to well-typed IPDL reactions and protocols. In addition to

respecting data types, the typing judgments guarantee that all reads from channels in reactions are

in scope, and that all channels are assigned at most one reaction in protocols.

The two main typing judgments in IPDL are for reactions, Δ; Γ ⊢ 𝑅 : 𝐼 → 𝜏 , and protocols,

Δ; Γ ⊢ 𝑃 : 𝐼 → 𝑂 . Here, Δ is a channel context – populated by free, external channels, as well as

internal channels generated by new – while Γ is a type context, used for sequential computations

inside reactions.

Figure 5 shows the typing rules for reactions. Intuitively, Δ; Γ ⊢ 𝑅 : 𝐼 → 𝜏 holds when 𝑅 uses

variables in Γ, reads from channels in 𝐼 typed according to Δ, and returns a value of type 𝜏 . The

typing rules for reactions are largely straightforward. We make use of standard typing rules for

expressions, which we omit. Typing rules for distributions are likewise straightforward, with

Γ ⊢ flip : bool.

Figure 6 gives the typing rules for protocols: Δ ⊢ 𝑃 : 𝐼 → 𝑂 holds when 𝑃 uses inputs in 𝐼 to

assign reactions to the channels in 𝑂 , all typed according to Δ. Channel assignment 𝑜 B 𝑅 has the

type 𝐼 → {𝑜} when 𝑅 is well-typed with an empty variable context, making use of inputs from 𝐼 as

well as 𝑜 . We allow 𝑅 to read from its own output 𝑜 to express divergence: the protocol 𝑜 B read 𝑜

cannot reduce, which is useful for (conditionally) deactivating certain outputs.

The typing rule for parallel composition 𝑃 | | 𝑄 states that 𝑃 may use the outputs of 𝑄 as inputs

while defining its own outputs, and vice versa. Importantly, the typing rules ensure that the outputs

of 𝑃 and 𝑄 are disjoint so that each channel carries a unique reaction. Finally, the rule for channel

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:11

Δ; Γ ⊢ 𝑅 : 𝐼 → 𝜏

Γ ⊢ 𝑒 : 𝜏
Δ; Γ ⊢ ret (𝑒) : 𝐼 → 𝜏

Γ ⊢ 𝐷 : 𝜏

Δ; Γ ⊢ samp (𝐷) : 𝐼 → 𝜏

(𝑖 : 𝜏) ∈ Δ 𝑖 ∈ 𝐼
Δ; Γ ⊢ read 𝑖 : 𝐼 → 𝜏

Γ ⊢ 𝑒 : bool Δ; Γ ⊢ 𝑅1 : 𝐼 → 𝜏 Δ; Γ ⊢ 𝑅2 : 𝐼 → 𝜏

Δ; Γ ⊢ if 𝑒 then 𝑅1 else 𝑅2 : 𝐼 → 𝜏

Δ; Γ ⊢ 𝑅 : 𝐼 → 𝜏 Δ; Γ, 𝑥 : 𝜏 ⊢ 𝑆 : 𝐼 → 𝜎

Δ; Γ ⊢ (𝑥 : 𝜏 ← 𝑅; 𝑆) : 𝐼 → 𝜎

Fig. 5. Typing for IPDL reactions.

Δ ⊢ 𝑃 : 𝐼 → 𝑂

𝑜 : 𝜏 ∈ Δ 𝑜 ∉ 𝐼 Δ; · ⊢ 𝑅 : 𝐼 ∪ {𝑜} → 𝜏

Δ ⊢ (𝑜 B 𝑅) : 𝐼 → {𝑜}

Δ ⊢ 𝑃 : 𝐼 ∪𝑂2 → 𝑂1 Δ ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2

Δ ⊢ 𝑃 | | 𝑄 : 𝐼 → 𝑂1 ∪𝑂2

Δ, 𝑜 : 𝜏 ⊢ 𝑃 : 𝐼 → 𝑂 ∪ {𝑜}
Δ ⊢ (new 𝑜 : 𝐴 in 𝑃) : 𝐼 → 𝑂

Fig. 6. Typing for IPDL protocols.

generation allows a protocol to select a fresh channel name 𝑜 , assign it a type 𝜏 , and use it for

internal computation and communication.

Protocol typing plays a crucial role for modeling security. Simulation-based security in IPDL is

modeled by existence of a simulator Sim with an appropriate typing judgment, Δ ⊢ Sim : 𝐼 → 𝑂 .

Restricting the behavior of Sim to only use inputs along 𝐼 is necessary to rule out trivial results

(e.g., Sim simply copies a secret from the specification).

4.2 Semantics
The semantics of IPDL is given in two steps. First, we define an operational semantics for reactions

and protocols. Our operational semantics is used to validate the exact fragment of our equational

logic, which proves perfect observational equivalence.

The second step is to define an interaction, or security game, between an IPDL program and a

resource-bounded, probabilistic distinguisher. The interaction semantics is used to validate approxi-
mate observational equivalences: these are used for cryptographic hardness assumptions, such as

security of encryption schemes or Diffie-Hellman, as well as top-level statements of security for

protocols.

To give semantics to user-defined symbols, we first define interpretations:

Definition 4.2 (Interpretation). An interpretation I for a signature Σ assigns:

• for each type symbol t, a bitstring length JtKI ∈ N;
• to each function symbol f : 𝜎 → 𝜏 a function JfK from bitstrings {0, 1}J𝜎KI

to bitstrings

{0, 1}J𝜏KI ;
• to each distribution symbol d : 𝜎 → 𝜏 a function JdKI from bitstrings {0, 1}J𝜎KI

to distributions
on bitstrings {0, 1}J𝜏KI .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:12 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

Above, we naturally lift the interpretation J·KI to data types by setting JboolKI = 1, J1KI = 0,

and J𝜏 × 𝜏 ′KI = J𝜏KI + J𝜏 ′KI . When the interpretation is clear from context, we omit it and simply

write J·K.

4.2.1 Operational Semantics. To define our operational semantics, we first augment the syntax of

protocols and reactions to contain intermediate values, where 𝑣 is a bitstring:

Expressions 𝑒 ::= . . . | 𝑣
Reactions 𝑅 ::= . . . | val(𝑣)
Protocols 𝑃 ::= . . . | 𝑜 B 𝑣

Throughout this section, we assume an ambient interpretation I for the signature Σ. Our
semantics builds on a big-step semantics 𝑒 ⇓ 𝑣 for expressions. The semantics is standard, except

that pairing is given by bitstring concatenation, and the projections fst𝜏2 , snd𝜏1 unambiguously

split the pair according to J𝜏2K and J𝜏1K, respectively. User defined function symbols f are given

semantics through the ambient interpretation I.
Our semantics uses finitely supported distributions throughout. We let unit(𝑣) be the distribution

assigning unit mass to 𝑣 . Additionally, given a family of distributions [𝑖 and constants 𝑐𝑖 ∈ [0, 1]
for 𝑖 = 1 . . . 𝑘 with

∑
𝑖 𝑐𝑖 = 1, we let

∑
𝑖 𝑐𝑖[𝑖 be the distribution induced by the linear combination.

We give semantics to reactions in Figure 7. Reactions have a straightforward small-step semantics

of the form 𝑅 → [, where [is a probability distribution over reactions. All sums

∑
𝑖 𝑐𝑖 [𝑖 are

implicitly finitely supported. Crucially, there is no semantic rule for stepping read 𝑐: we model

communication via semantics for protocols, which substitute all instances of read for values.

Semantics for protocols are given in Figure 8. We give semantics to protocols via two main

small-step rules, and a big-step rule which coordinates the small steps. First is the output relation
𝑃

𝑜 B 𝑣↦−−−−→ 𝑄 , which is enabled when the reaction for channel 𝑜 in 𝑃 terminates, resulting in value 𝑣 .

When this happens, the value of 𝑜 is broadcast to all other protocols set in parallel composition

with 𝑃 , resulting in read 𝑜 commands in other reactions to be substituted with val(𝑣). Note that
the value of 𝑜 is not broadcast above a new when the local channel is equal to 𝑜 .

Secondly, we have the internal stepping relation 𝑃 → [, specified similarly to the small-step

relation for reactions. The first rule lifts the stepping relation of 𝑅 to the stepping relation for

(𝑜 B 𝑅), while the next three rules simply propagate the stepping relation through parallel

composition and new. The last rule links the output relation with the stepping relation: whenever

𝑃 steps to 𝑄 , resulting in the output 𝑐 B 𝑣 , we have that new 𝑐 : 𝜏 in 𝑃 steps with unit mass to

new 𝑐 : 𝜏 in 𝑄 .

Finally, we have the big-step relation 𝑃 ⇓ [, meaning that 𝑃 takes as many steps as possible,

resulting in a distribution [. The big-step relation applies as many output and internal steps as

possible until the protocol cannot perform either.

Note that while the semantics for reactions is sequential, both output and internal step relations

for protocols are nondeterministic. Indeed, any two channels in a protocol may produce outputs in

any order. Ordinarily, this presents a problem for reasoning about cryptography, since nondeter-

ministic choice may present a security leak. However, our language introduces no way to exploit

this extra nondeterminism, essentially due to read commands in reactions being blocking. This is

formalized by a confluence result for IPDL:

Lemma 4.3 (Confluence). If Δ ⊢ 𝑃 : 𝐼 → 𝑂 , then:

• If 𝑃
𝑜 B 𝑣↦−−−−→ 𝑄 and 𝑃

𝑜 B 𝑣′↦−−−−→ 𝑄 ′, then 𝑣 = 𝑣 ′ ∧𝑄 = 𝑄 ′;
• If 𝑃

𝑜1 B 𝑣1↦−−−−−→ 𝑄1 and 𝑃
𝑜2 B 𝑣2↦−−−−−→ 𝑄2 with 𝑜1 ≠ 𝑜2, then there exists 𝑄 such that 𝑄1

𝑜2 B 𝑣2↦−−−−−→ 𝑄 and
𝑄2

𝑜1 B 𝑣1↦−−−−−→ 𝑄 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:13

𝑅 → [

𝑒 ⇓ 𝑣
ret (𝑒) → unit(val(𝑣))

𝑒 ⇓ 1
if 𝑒 then 𝑅1 else 𝑅2 → unit(𝑅1)

𝑒 ⇓ 0
if 𝑒 then 𝑅1 else 𝑅2 → unit(𝑅2) 𝑥 : 𝜏 ← val(𝑣); 𝑆 → unit(𝑆 [𝑥 := 𝑣])

𝐷 ⇓
∑︁
𝑖

𝑐𝑖 unit(𝑣𝑖)

samp (𝐷) →
∑︁
𝑖

𝑐𝑖 unit(val(𝑣𝑖))

𝑅 →
∑︁
𝑖

𝑐𝑖 unit(𝑅𝑖)

𝑥 : 𝜏 ← 𝑅; 𝑆 →
∑︁
𝑖

𝑐𝑖 unit(𝑥 : 𝜏 ← 𝑅𝑖 ; 𝑆)

Fig. 7. Semantics for reactions.

• If 𝑃
𝑜 B 𝑣↦−−−−→ 𝑄 and 𝑃 → [, then there exists [′ such that [

𝑜 B 𝑣↦−−−−→ [′ and 𝑄
[B ′

↦−−−−→.
• If 𝑃 → [1 and 𝑃 → [2, then either [1 = [2, or there exists [such that [1 → [and [2 → [.

In the above definitions, we lift the two stepping relations

𝑜 B 𝑣↦−−−−→ and→ to distributions in the

natural way. The confluence result guarantees that the big-step relation for protocols is well-defined:

Corollary 4.4 (Determinism of ⇓). Suppose Δ ⊢ 𝑃 : 𝐼 → 𝑂 . Then there exists a unique [such
that 𝑃 ⇓ [.

When ranging over multiple interpretations I, we index our operational semantics by I, obtain-
ing ⇓I ,→I , and

𝑜 B 𝑣↦−−−−→I .

4.2.2 Computational Semantics. While the operational semantics is useful for validating exact

observational equivalences between IPDL programs, we need more machinery to validate approxi-

mate equivalences. First, we define distinguishers, or resource-bounded algorithms who interact

with IPDL protocols in a well-defined interaction.
Second, we define a notion of size for protocols, which constraints them to be polynomial time.

Computing sizes for protocol contexts is necessary for soundness, as approximate equivalences are

only sound against polynomial time distinguishers and program contexts.

We distinguish IPDL protocols using general polynomial time algorithms since IPDL protocols

are not fully general. Indeed, IPDL protocols cannot test for the presence or non-presence of a value

along a certain channel, while our distinguishers can. This extra expressivity in our distinguishers

ensures that not only do IPDL protocols not use timing information, but they do not present any

leaks through timing channels either.

Distinguishers and Interactions. Let I be an interpretation for Σ. Then, given channel sets 𝐼 ,𝑂

for channel context Δ, we define the setQueryI,Δ,𝐼 ,𝑂 to be:

QueryI,Δ,𝐼 ,𝑂 := {Input(𝑖, 𝑣) | 𝑖 ∈ 𝐼 , 𝑣 ∈ {0, 1}JΔ(𝑖)KI }} ∪ {Get(𝑜), 𝑜 ∈ 𝑂} ∪ {Step}.
Definition 4.5 (Δ-Distinguisher). Given an interpretation I, A (I,Δ, 𝐼 ,𝑂)-distinguisher A is a

triple of probabilistic algorithms (Astep,Aout,Adecide) where:
• Astep : {0, 1}∗ → {0, 1}∗ ×QueryI,Δ,𝐼 ,𝑂 takes input a state 𝑠 (encoded as a bitstring), and

returns a new state and a query;

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:14 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

𝑃
𝑜 B 𝑣↦−−−−→ 𝑄

𝑜 B val(𝑣) 𝑜 B 𝑣↦−−−−→ 𝑜 B 𝑣

𝑃
𝑜 B 𝑣↦−−−−→ 𝑃 ′

𝑃 | | 𝑄 𝑜 B 𝑣↦−−−−→ 𝑃 ′ | | 𝑄 [read 𝑜 B val(𝑣)]

𝑄
𝑜 B 𝑣↦−−−−→ 𝑄 ′

𝑃 | | 𝑄 𝑜 B 𝑣↦−−−−→ 𝑃 [read 𝑜 B val(𝑣)] | | 𝑄 ′
𝑃

𝑜 B 𝑣↦−−−−→ 𝑄 𝑜 ≠ 𝑐

new 𝑐 : 𝜏 in 𝑃
𝑜 B 𝑣↦−−−−→ new 𝑐 : 𝜏 in 𝑄

𝑃 → [

𝑅 →
∑︁
𝑖

𝑐𝑖 unit(𝑅𝑖)

𝑜 B 𝑅 →
∑︁
𝑖

𝑐𝑖 unit(𝑜 B 𝑅𝑖)

𝑃 →
∑︁
𝑖

𝑐𝑖 unit(𝑃𝑖)

𝑃 | | 𝑄 →
∑︁
𝑖

𝑐𝑖 unit(𝑃𝑖 | | 𝑄)

𝑄 →
∑︁
𝑖

𝑐𝑖 unit(𝑄𝑖)

𝑃 | | 𝑄 →
∑︁
𝑖

𝑐𝑖 unit(𝑃 | | 𝑄𝑖)

𝑃 →
∑︁
𝑖

𝑐𝑖 unit(𝑃𝑖)

new 𝑐 : 𝜏 in 𝑃 →
∑︁
𝑖

𝑐𝑖 unit(new 𝑐 : 𝜏 in 𝑃𝑖)
𝑃

𝑐 B 𝑣↦−−−−→ 𝑄

new 𝑐 : 𝜏 in 𝑃 → unit(new 𝑐 : 𝜏 in 𝑄)

𝑃 ⇓ [

𝑃 ̸→ ∀𝑜, 𝑣 . 𝑃 ̸𝑜 B 𝑣↦−−−−→
𝑃 ⇓ unit(𝑃)

𝑃 →
∑︁
𝑖

𝑐𝑖 unit(𝑃𝑖) 𝑃𝑖 ⇓ [𝑖

𝑃 ⇓
∑︁
𝑖

𝑐𝑖 [𝑖
𝑃

𝑜 B 𝑣↦−−−−→ 𝑄 𝑄 ⇓ [
𝑃 ⇓ [

Fig. 8. Semantics for protocols

• Aout : {0, 1}∗ × (𝑜 : 𝑂) × (1 + {0, 1}JΔ(𝑜)KI) → {0, 1}∗ takes a state 𝑠 , a channel 𝑜 , an optional

value 𝑣 for 𝑜 , and returns a new state; and

• Adecide : {0, 1}∗ → {0, 1} takes a state and returns a single bit.

We bound the running time of distinguishers by bounding the running time of each algorithm:

Definition 4.6 (𝑘-Bounded Distinguisher). A (I,Δ, 𝐼 ,𝑂)-distinguisher is 𝑘-bounded when its

algorithms (Astep,Aout,Adecide) all run in at most 𝑘 time steps.

For compositional reasoning, we do not wish to penalize the time bound of A for indexing into

the channel sets 𝐼 and𝑂 . Thus, in the above definitions, our model of computation for distinguishers

consists of probabilistic Turing machines over the alphabet 𝐼 ∪𝑂 ∪ {0, 1}. Increasing the alphabet

size of A will not introduce unrealistic assumptions about our timing model: asymptotically, the

size of Δwill be bounded by a polynomial (so will 𝐼 and𝑂), which allows simulation of the alphabets

𝐼 and 𝑂 using logarithmically many bits.

We then define the interaction of distinguishers and IPDL protocols in Figure 9.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:15

Definition 4.7 (Interaction). Let I be an interpretation for the ambient signature Σ, Δ ⊢ 𝑃 : 𝐼 → 𝑂 ,

andA be a𝑘-bounded (I,Δ, 𝐼 ,𝑂)-distinguisher. Then, we letA𝑘 (𝑃I) be the probability distribution
on bits induced by the algorithm given in Figure 9.

Algorithm A𝑘 (𝑃I):
𝑠 := 𝜖

For 𝑘 rounds:

(𝑠′, 𝑞) ← Astep (𝑠)
𝑠 := 𝑠′

If 𝑞 = Input(𝑖, 𝑣) :
𝑃 := 𝑃 [read 𝑖 := ret (𝑣)]
If 𝑞 = Get(𝑜) :
If (𝑜 B 𝑣) ∈ 𝑃 for some 𝑣 :

𝑠 := Aout (𝑠, 𝑜, Some(𝑣))
Else :

𝑠 := Aout (𝑠, 𝑜,None)
𝑃 ← [, where 𝑃 ⇓I [
return Adecide (𝑠)

Fig. 9. Interaction of IPDL program Δ ⊢
𝑃 : 𝐼 → 𝑂 with 𝑘-bounded (I,Δ, 𝐼 ,𝑂)
distinguisher A.

In Figure 9, we let the distinguisher interact with the pro-

tocol through a number of rounds, which we also bound by 𝑘 .

The distinguisher maintains a state variable 𝑠 , which we ini-

tialize to the empty bitstring Y. Each round, the distinguisher

outputs a query 𝑞 ∈ Query, which may optionally deliver

an input or ask for an output If 𝑞 = Input(𝑖, 𝑣) with 𝑖 ∈ 𝐼 ,
we substitute read 𝑖 with val(𝑣) in 𝑃 . (This has no effect if

𝑖 already was assigned an input.) If 𝑞 = Get(𝑜) with 𝑜 ∈ 𝑂 ,
we check whether 𝑜 has already been computed in 𝑃 , which

happens when (𝑜 B 𝑣) ∈ 𝑃 for some 𝑣 . If such a value 𝑣

exists, we output it to the distinguisher as Some(𝑣); other-
wise, we return None. If 𝑞 is Step, we simply proceed to the

next round. After 𝑘 rounds, we obtain a decision bit from the

distinguisher based on its current state.

To define approximate equivalence, we make use of prob-
abilistic polynomial-time (PPT) families of distinguishers:

Definition 4.8 (PPT Distinguishers). Let {I_} be a fam-

ily of interpretations for Σ, indexed by natural numbers

. Additionally, let {Δ, 𝐼_,𝑂_}_ be a family of channel

contexts Δ_ and channel sets for Δ_ . Then a PPT distin-
guisher for {Δ_, 𝐼_,𝑂_} is a family {A_}_ such that A_ is

a (I_,Δ_, 𝐼_,𝑂_)-distinguisher, along with a polynomial 𝑝

such that A_ is 𝑝 (_)-bounded for all _.

Ensuring PPT for Protocols. To ensure that we apply approx-
imate equivalences soundly, we need to ensure that they are only applied in polynomial-time IPDL

contexts.

To capture probablistic polynomial time (PPT) for IPDL, we first consider PPT families of

interpretations I_ . Intuitively, the family I_ is PPT when it assigns polynomial lengths to type

symbols t, and PPT computable functions to function symbols f and distribution symbols d.

To give semantics to distribution symbols, we need to allow for probabilistic algorithms which

only succeed with negligible probability. Recall that a negligible function Y : N→ Q is one that is

eventually smaller than the inverse of any polynomial: ∀𝐾, ∃𝑁,∀𝑛 > 𝑁, Y (𝑛) < 1

𝑛𝐾
.

Definition 4.9 (Realizable Distribution). Let 𝐷 be a map from bitstrings to probability distributions

over bitstrings, and let 𝑇 be a probabilistic Turing machine. We say that 𝑇 realizes 𝐷 with error Y if,

for all 𝑥 and 𝑦, | Pr[𝑇 (𝑥) = 𝑦] − 𝐷 (𝑥) (𝑦) | ≤ Y.
Definition 4.10 (PPT Interpretation). Given an IPDL signature Σ, a family {I_}_ of interpretations

is polynomial if there exists a 𝐾 ∈ N such that:

• for all type symbols t, JtKI_ ≤ _𝐾 for all sufficiently large _;

• for all function symbols f, that JfKI_ (·) is computable by a Turing machine in time at most

_𝐾 , for all sufficiently large _; and

• for all distribution symbols d, there exists a negligible function Y such that for all sufficiently

large _, JdKI_ is realizable by a probabilistic Turing machine running in time at most _𝐾 with

error Y (_).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:16 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

Enforcing PPT for Protocols. Since IPDL protocols are finite networks of channels and do not

contain recursion, we ensure polynomial time for protocols by simply counting the number of

function symbols applied in reactions, and the number of channel bindings in protocols. Assuming

that the interpretation I is bounded by a reasonable running time, we will obtain that the protocol

is as well.

This count is given by a symbolic size | · |, defined for expressions, reactions, and protocols. Since
we assume that function and distribution symbols are PPT, our symbolic size for expressions and

reactions simply counts the number of variables and function applications present in the syntax.

(For example, |f 𝑒 | := |𝑒 | + 1, while | (𝑒1, 𝑒2) | := |𝑒1 | + |𝑒2 |.) The only subtle rule is for ifs inside of

reactions, where we take the max: |if 𝑒 then 𝑅1 else 𝑅2 | := |𝑒 | +max(|𝑅1 |, |𝑅2 |). We formally define

symbolic size in the full version [Gancher et al. 2022].

IPDL Contexts. To support compositional reasoning, we additionally define typed protocol contexts
for IPDL:

Program Contexts C ::= ◦ | \★(C) | C || 𝑄 | 𝑃 | | C | new 𝑜 : 𝜏 in C

Contexts are essentially protocols with a single hole. The exception is channel embedding, \★(C),
where \ : Δ1 → Δ2 is an injection from channels in a smaller context to a larger one. Channel

embeddings operate naturally on programs, channel sets, and contexts, forming \★(𝐼), \★(𝑃), and
\★(C), respectively.

Contexts have a straightforward typing judgment C : (Δ ⊢ 𝐼 → 𝑂) → (Δ′ ⊢ 𝐼 ′ → 𝑂 ′)
transforming well-typed protocols to well-typed protocols, given in the full version [Gancher et al.

2022]. We write 𝐶 (𝑃) for the application of 𝑃 to the context 𝐶 . Symbolic sizes are lifted to contexts

in a straightforward manner, given in the right side of Figure 13.

Given symbolic sizes for contexts, we say that the family {𝐶_ : (Δ_ ⊢ 𝐼_ → 𝑂_) → (Δ′_ ⊢ 𝐼
′
_
→

𝑂 ′
_
)} is PPT when there exists a polynomial 𝑝 such that |𝐶_ | ≤ 𝑝 (_) for all _, and |Δ_ | ≤ 𝑝 (_) for

all _.

Approximate Equivalence. Given two families {𝑃_}_ and {𝑄_}_ of IPDL programs, we define

them approximately equivalent when no PPT distinguisher can distinguish them up to PPT contexts:

Definition 4.11 (Approximate Equivalence). Let Δ_ ⊢ 𝑃_ : 𝐼_ → 𝑂_ and Δ_ ⊢ 𝑄_ : 𝐼_ → 𝑂_ be

two families of IPDL protocols with identical typing judgments. Then, we say that 𝑃_ and 𝑄_ are

indistinguishable under PPT interpretation, written I_ ;Δ_ ⊨ 𝑃_ ≈_ 𝑄_ : 𝐼_ → 𝑂_ , when: |Δ_ | is
bounded by a polynomial in _; and for any PPT family of program contexts {𝐶_ : (Δ_ ⊢ 𝐼_ →
𝑂_) → (Δ′_ ⊢ 𝐼

′
_
→ 𝑂 ′

_
)}, and for all PPT families of distinguishers {A_} for {Δ′_, 𝐼_,𝑂_} bounded

by 𝑝 (·), there exists a negligible function Y such that

| Pr[A𝑝 (_)
_
(𝐶_ (𝑃_)I_)] − Pr[A𝑝 (_)

_
(𝐶_ (𝑄_)I_)] | ≤ Y (_).

4.3 Equational Logic
We now present the equational logic of IPDL. The logic is divided into two halves: exact rules
establish semantic equivalences between protocols, while approximate rules are used to discharge

indistinguishability assumptions.

4.3.1 Exact Equivalences. The bulk of the reasoning in IPDL is done using exact equivalences. We

have rules for reaction equivalence and protocol equivalence.

Reaction Equivalence. Reaction equivalence Δ; Γ ⊢ 𝑅1 = 𝑅2 : 𝐼 → 𝜏 states when reactions 𝑅1
and 𝑅2 behave identically, reading from input channels in 𝐼 and returning values of type 𝜏 . We

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:17

informally highlight select rules here, and defer the formal rules to the full version [Gancher et al.

2022].

Since the nontrivial effects for reactions are reading from channels and probabilistic sampling,

we have that reactions form a commutative monad: that is, (𝑥 ← 𝑅1; 𝑦 ← 𝑅2; 𝑅3 𝑥 𝑦) = (𝑦 ←
𝑅2; 𝑥 ← 𝑅1; 𝑅3 𝑥 𝑦) holds whenever 𝑅2 does not depend on 𝑥 . All expected equivalences for

commutative monads hold for reactions, including the usual monad laws and congruence of

equivalence under monadic bind. The samp-pure rule allows us to drop an unused sampling:

(_ : 𝜏 ← samp (𝐷); 𝑆) = 𝑆 . The read-det rule allows us to replace two reads from the same

channel by a single one:

(𝑥 : 𝜏 ← read 𝑖; 𝑦 : 𝜏 ← read 𝑖; 𝑆) =
(
𝑥 : 𝜏 ← read 𝑖; 𝑆 [𝑦 B 𝑥]

)
.

The rule flip-unif states that the distribution flip on Booleans is indeed uniform:

(𝑥 ← samp (flip); if 𝑥 then false else true) = samp (flip).
Finally, we have rules which allow us to manipulate conditionals. The rules if-left and if-right

allow us to rewrite inside of conditionals on either branch, while if-ext allows us to expand a

conditional:

𝑅 [𝑥 B 𝑒] = if 𝑒 then 𝑅 [𝑥 B true] else 𝑅(𝑥 B false).

Protocol Equivalence. Exact protocol equivalences allow reasoning about communication between

subprotocols, functional correctness, and simplifying intermediate computations. We will see in

Section 4.4 that exact equivalence implies the existence of a bisimulation on protocols, which in

turn implies indistinguishability against an arbitrary distinguisher.

Our proof rules make use of equivalence axioms, which are used to specify user-defined assump-

tions about functional equivalence (e.g., correctness of decryption). We collect such axioms into an

exact theory:

Definition 4.12 (Exact Theory). Given an ambient signature Σ, an exact theory T= is a finite set of

axioms of the form Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂 , where Δ ⊢ 𝑃 : 𝐼 → 𝑂 and Δ ⊢ 𝑄 : 𝐼 → 𝑂 .

Our proof rules for protocol equivalence assume an ambient exact theory T=.
The rules for the exact equivalence of protocols are in Figures 10 and 11; we now describe them

informally. The embed rule states that exact equivalence is invariant under channel embeddings

\ : Δ1 → Δ2. The axiom rule incorporates axioms into the equational theory for exact equivalences.

The remaining equational rules in Figure 11 use red to distinguish the differences between the

left and right hand sides. The comp-new rule allows us to permute parallel composition and the

creation of a new channel, and the same as scope extrusion in process calculi [Milner et al. 1992]. The

absorb-left rule allows us to discard a component in a parallel composition if it has no outputs;

this allows us to eliminate internal channels once they are no longer used. The symmetric rule

absorb-right (not shown) is derivable. The diverge rule allows us to simplify diverging reactions:

if a channel reads from itself and continues as an arbitrary reaction 𝑅, then we can safely discard 𝑅

as we will never reach it in the first place.

The (un)folding rules fold-if-left and fold-bind allow us to simplify composite reactions by

bringing their components into the protocol level as separate internal channels. (We also have the

symmetric rule fold-if-right.) Finally, the three rules subsume, subst, and unused allow us to

manipulate channel dependencies. The rule subsume states that dependency is transitive: if we

depend on 𝑜1 and 𝑜1 itself depends on 𝑜0, then we depend on 𝑜0 and this dependency can be made

explicit.

The subst rule allows inlining reactions into read commands. Inlining (𝑜1 := 𝑅1) into (𝑜2 :=

(𝑥 ← read 𝑜1; 𝑅2)) is only sound when 𝑅1 is duplicable: observing two independent results

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:18 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂

Δ ⊢ 𝑃 : 𝐼 → 𝑂

Δ ⊢ 𝑃 = 𝑃 : 𝐼 → 𝑂
refl

Δ ⊢ 𝑃1 = 𝑃2 : 𝐼 → 𝑂

Δ ⊢ 𝑃2 = 𝑃1 : 𝐼 → 𝑂
sym

Δ ⊢ 𝑃1 = 𝑃2 : 𝐼 → 𝑂 Δ ⊢ 𝑃2 = 𝑃3 : 𝐼 → 𝑂

Δ ⊢ 𝑃1 = 𝑃3 : 𝐼 → 𝑂
trans

⊢ \ : Δ1 → Δ2 Δ1 ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂

Δ2 ⊢ \★(𝑃) = \★(𝑄) : \★(𝐼) → \★(𝑂)
embed

(Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂) ∈ T=
Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂

axiom

𝑜 : 𝜏 ∈ Δ Δ; · ⊢ 𝑅 = 𝑅′ : 𝐼 ∪ {𝑜} → 𝜏

Δ ⊢ (𝑜 B 𝑅) = (𝑜 B 𝑅′) : 𝐼 → {𝑜}
cong-react

𝑖 ∉ 𝐼 ,𝑂 Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂

Δ ⊢ 𝑃 = 𝑄 : 𝐼 ∪ {𝑖} → 𝑂
input-unused

Δ ⊢ 𝑃 = 𝑃 ′ : 𝐼 ∪𝑂2 → 𝑂1 Δ ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2

Δ ⊢ 𝑃 | | 𝑄 = 𝑃 ′ | | 𝑄 : 𝐼 → 𝑂1 ∪𝑂2

cong-comp-left

Δ, 𝑜 : 𝜏 ⊢ 𝑃 = 𝑃 ′ : 𝐼 → 𝑂 ∪ {𝑜}
Δ ⊢ (new 𝑜 : 𝜏 in 𝑃) = (new 𝑜 : 𝜏 in 𝑃 ′) : 𝐼 → 𝑂

cong-new

Δ ⊢ 𝑃1 : 𝐼 → 𝑂1 Δ ⊢ 𝑃2 : 𝐼 → 𝑂2

Δ ⊢ 𝑃1 | | 𝑃2 = 𝑃2 | | 𝑃1 : 𝐼 → 𝑂1 ∪𝑂2

comp-comm

Δ ⊢ 𝑃1 : 𝐼 ∪𝑂2 ∪𝑂3 → 𝑂1

Δ ⊢ 𝑃2 : 𝐼 ∪𝑂1 ∪𝑂3 → 𝑂2 Δ ⊢ 𝑃2 : 𝐼 ∪𝑂1 ∪𝑂3 → 𝑂1

Δ ⊢ (𝑃1 | | 𝑃2) | | 𝑃3 = 𝑃1 | | (𝑃2 | | 𝑃3) : 𝐼 → 𝑂1 ∪𝑂2 ∪𝑂3

comp-assoc

Δ, 𝑜1 : 𝜏1, 𝑜2 : 𝜏2 ⊢ 𝑃 : 𝐼 → 𝑂 ∪ {𝑜1, 𝑜2}
Δ ⊢ (new 𝑜1 : 𝜏1 in new 𝑜2 : 𝜏2 in 𝑃) = (new 𝑜2 : 𝜏2 in new 𝑜1 : 𝜏1 in 𝑃) : 𝐼 → 𝑂

new-exch

Δ ⊢ 𝑃 : 𝐼 ∪𝑂2 → 𝑂1 Δ, 𝑜 : 𝜏 ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2 ∪ {𝑜}
Δ ⊢ 𝑃 | | (new 𝑜 : 𝜏 in 𝑄) = new 𝑜 : 𝜏 in (𝑃 | | 𝑄) : 𝐼 → 𝑂1 ∪𝑂2

comp-new

Δ ⊢ 𝑃 : 𝐼 → 𝑂 Δ ⊢ 𝑄 : 𝐼 ∪𝑂 → ∅
Δ ⊢ 𝑃 | | 𝑄 = 𝑃 : 𝐼 → 𝑂

absorb-left

𝑜 : 𝜏 ∈ Δ Δ; · ⊢ 𝑅 : 𝐼 ∪ {𝑜} → 𝜏

Δ ⊢ (𝑜 B 𝑥 : 𝜏 ← read 𝑜 ; 𝑅) = (𝑜 B read 𝑜) : 𝐼 → {𝑜}
diverge

Fig. 10. Exact equality for IPDL protocols. Additional rules are given in Figure 11.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:19

Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂

𝑜 : 𝜏 ∈ Δ
Δ; · ⊢ 𝑅 : 𝐼 ∪ {𝑜} → bool Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏 Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

Δ ⊢ (new 𝑙 : 𝜏 in 𝑜 B 𝑥 : bool← 𝑅; if 𝑥 then read 𝑙 else 𝑆2 | | 𝑙 B 𝑆1) =
(𝑜 B 𝑥 : bool← 𝑅; if 𝑥 then 𝑆1 else 𝑆2) : 𝐼 → {𝑜}

fold-if-left

𝑜 : 𝐵 Δ; · ⊢ 𝑅 : 𝐼 ∪ {𝑜} → 𝜏 Δ; 𝑥 : 𝜏 ⊢ 𝑆 : 𝐼 ∪ {𝑜} → 𝐵

Δ ⊢ (new 𝑐 : 𝜏 in 𝑜 B 𝑥 : 𝜏 ← read 𝑐; 𝑆 | | 𝑐 B 𝑅) = (𝑜 B 𝑥 : 𝜏 ← 𝑅; 𝑆) : 𝐼 → {𝑜}
fold-bind

𝑜1 ≠ 𝑜2 𝑜0 : 𝜏0, 𝑜1 : 𝜏1, 𝑜2 : 𝜏2 ∈ Δ 𝑜0 ∈ 𝐼 ∪ {𝑜1, 𝑜2}
Δ; 𝑥0 : 𝜏0 ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1 Δ; 𝑥1 : 𝜏1 ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2

Δ ⊢ (𝑜1 B 𝑥0 : 𝜏0 ← read 𝑜0; 𝑅1 | | 𝑜2 B 𝑥0 : 𝜏0 ← read 𝑜0; 𝑥1 : 𝜏1 ← read 𝑜1; 𝑅2) =
(𝑜1 B 𝑥0 : 𝜏0 ← read 𝑜0; 𝑅1 | | 𝑜2 B 𝑥1 : 𝜏1 ← read 𝑜1; 𝑅2) : 𝐼 → {𝑜1, 𝑜2}

subsume

𝑜1 ≠ 𝑜2 𝑜1 : 𝜏1, 𝑜2 : 𝜏2 ∈ Δ
Δ; · ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1 Δ; 𝑥1 : 𝜏1 ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2

Δ; · ⊢
(
𝑥1 ← 𝑅1; 𝑥

′
1
← 𝑅1; ret ((𝑥1, 𝑥 ′1))

)
=
(
𝑥1 ← 𝑅1; ret ((𝑥1, 𝑥1)

)
) : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1 × 𝜏1

Δ ⊢ (𝑜1 B 𝑅1 | | 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2) = (𝑜1 B 𝑅1 | | 𝑜2 B 𝑥1 ← 𝑅1; 𝑅2) : 𝐼 → {𝑜1, 𝑜2}
subst

𝑜1 ≠ 𝑜2 𝑜1 : 𝜏1, 𝑜2 : 𝜏2 ∈ Δ Δ; · ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1
Δ; · ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2 Δ; · ⊢ (𝑥1 : 𝜏1 ← 𝑅1; 𝑅2) = 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2

Δ ⊢ (𝑜1 B 𝑅1 | | 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2) = (𝑜1 B 𝑅1 | | 𝑜2 B 𝑅2) : 𝐼 → {𝑜1, 𝑜2}
unused

Fig. 11. Additional rules for exact equality of IPDL protocols. Distinguishing changes of equalities are

highlighed in red.

of evaluating 𝑅1 is equivalent to observing the same result twice. This side condition is easily

discharged whenever 𝑅1 does not contain probabilistic sampling.

Finally, the unused rule allows dropping unused reads from channels. Due to timing dependencies

between channels, we only allow dropping reads from (𝑜1 := 𝑅1) in the context of (𝑜2 := (_ ←
read 𝑜1; 𝑅2)) when we have that (_← 𝑅1; 𝑅2) = 𝑅2. This side condition is met whenever all reads

present in 𝑅1 are also present in 𝑅2.

4.3.2 Approximate Equivalence. We now turn to approximate equivalence, which establishes indis-

tinguishability between families of protocols {𝑃_} and {𝑄_} against PPT adversaries. Similar to

exact theories T=, we collect axioms for indistinguishability into an approximate theory, T≈.

Definition 4.13 (Approximate Theory). Let Σ be a signature. An approximate theory T≈ is a finite
set of axioms of the form {Δ_ ⊢ 𝑃_ ≈_ 𝑄_ : 𝐼_ → 𝑂_}, indexed by natural numbers _.

We establish approximate equivalences between protocol families {𝑃_} and {𝑄_} by proving an

appropriate equivalence between 𝑃_ and 𝑄_ for each security parameter _.

To maintain soundness, our main approximate equivalence judgment Δ ⊢ 𝑃 ≈(𝑘,𝑙)
_

𝑄 : 𝐼 → 𝑂

uses two parameters, 𝑘 and 𝑙 to track negligibility and resource-bounded contexts. The axiom

parameter, 𝑘 , simply counts the number of invocations of axioms applied during the proof: 𝑘 is 1

when applying a single axiom in T≈, and the transitivity rule adds the two values of 𝑘 together.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:20 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

Δ ⊢ 𝑃1 ≈(𝑘,𝑙)_
𝑃2 : 𝐼 → 𝑂

Δ ⊢Σ,T 𝑃 = 𝑄 : 𝐼 → 𝑂

Δ ⊢ 𝑃 ≈(0,0)
_

𝑄 : 𝐼 → 𝑂
strict

Δ ⊢ 𝑃 ≈(𝑘1,𝑙1)
_

𝑄 : 𝐼 → 𝑂 𝑘1 ≤ 𝑘2 𝑙1 ≤ 𝑙2
Δ ⊢ 𝑃 ≈(𝑘2,𝑙2)

_
𝑄 : 𝐼 → 𝑂

subsume

Δ ⊢ 𝑃1 ≈(𝑘,𝑙)_
𝑃2 : 𝐼 → 𝑂

Δ ⊢ 𝑃2 ≈(𝑘,𝑙)_
𝑃1 : 𝐼 → 𝑂

sym

Δ ⊢ 𝑃1 ≈(𝑘1,𝑙1)_
𝑃2 : 𝐼 → 𝑂 Δ ⊢ 𝑃2 ≈(𝑘2,𝑙2)_

𝑃3 : 𝐼 → 𝑂

Δ ⊢ 𝑃1 ≈(𝑘1+𝑘2,max(𝑙1,𝑙2))
_

𝑃3 : 𝐼 → 𝑂
trans

\ : Δ1 → Δ2 Δ1 ⊢ 𝑃 ≈(𝑘,𝑙)_
𝑄 : 𝐼 → 𝑂

Δ2 ⊢ \★(𝑃) ≈(𝑘,𝑙)_
\★(𝑄) : \★(𝐼) → \★(𝑂)

embed

{Δ𝑛 ⊢ 𝑃𝑛 ≈_ 𝑄𝑛 : 𝐼𝑛 → 𝑂𝑛} ∈ T≈
Δ ⊢ 𝑃_ ≈(1,0)_

𝑄_ : 𝐼_ → 𝑂_

axiom

Δ ⊢ 𝑃 ≈(𝑘,𝑙)
_

𝑃 ′ : 𝐼 ∪𝑂2 → 𝑂1 Δ ⊢Σ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2

Δ ⊢ 𝑃 | | 𝑄 ≈(𝑘,𝑙+|𝑄 |)
_

𝑃 ′ | | 𝑄 : 𝐼 → 𝑂1 ∪𝑂2

cong-comp-left

Δ, 𝑜 : 𝐴 ⊢ 𝑃 ≈(𝑘,𝑙)
_

𝑃 ′ : 𝐼 → 𝑂 ∪ {𝑜}

Δ ⊢ (new 𝑜 : 𝐴 in 𝑃) ≈(𝑘,𝑙)
_
(new 𝑜 : 𝐴 in 𝑃 ′) : 𝐼 → 𝑂

cong-new

⊢ {Δ_ ⊢ 𝑃_ ≈_ 𝑄_ : 𝐼_ → 𝑂_}

∀_,Δ_ ⊢ 𝑃_ ≈(𝑘_,𝑙_)_
𝑄_ : 𝐼_ → 𝑂_

𝑘_ = 𝑂 (poly(_)) 𝑙_ = 𝑂 (poly(_)) |Δ_ | = 𝑂 (poly(_))
⊢ {Δ_ ⊢ 𝑃_ ≈_ 𝑄_ : 𝐼_ → 𝑂_}

Fig. 12. Approximate equality for IPDL protocols.

Our soundness result will bound 𝑘 by a polynomial in the security parameter to ensure that we do

not apply exponentially many axioms.

The second parameter, 𝑙 , tracks the largest size of protocol contexts applied to axioms in T≈. While

our PPT interpretations (Definition 4.10) ensure that each function symbol is PPT, exponentially

large IPDL contexts can encode non-PPT computations. Thus, our soundness result also requires

that 𝑙 is polynomial in the security parameter to ensure that all IPDL contexts are PPT.

The top of Figure 12 shows the rules for approximate equivalence. Since most nontrivial reasoning

in IPDL is done in the exact half, the approximate equivalence rules are used mostly to apply

indistinguishability axioms deeply nested inside protocols. Crucially, rule strict allows us to

descend to the exact half of the proof system.

Finally, the bottom of Figure 12 defines when two protocol families {𝑃_} and {𝑄_} are indis-
tinguishable. This holds when, for each choice of _, Δ_ ⊢ 𝑃_ ≈(𝑘 (_),𝑙 (_))_

𝑄_ : 𝐼_ → 𝑂_ , and the

parameters 𝑘 (_) and 𝑙 (_) only grow polynomially with _, as does the size |Δ_ | of each channel

context.

4.4 Soundness
Our main result is that our judgment for approximate equivalence is sound. To state soundness, we

first need to introduce our notion of soundness for exact protocol equality:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:21

Definition 4.14 (Protocol bisimulation). Given an interpretation I for a signature Σ, a protocol
bisimulation ∼ is a binary relation on distributions on protocols Δ ⊢ 𝑃 : 𝐼 → 𝑂 satisfying the

following conditions:

• Closure under joint convex combinations: We have

∑
𝑖B1,...,𝑘 𝑐𝑖[𝑖 ∼

∑
𝑖B1,...,𝑘 𝑐𝑖Y𝑖 for any

coefficients

∑
𝑖B1,...,𝑘 𝑐𝑖 = 1 and distributions [𝑖 ∼ Y𝑖 for 𝑖 B 1, . . . , 𝑘 .

• Closure under input assignment: For any distributions [∼ `, channel 𝑖 : 𝜏 ∈ Δ, and value

𝑣 ∈ {0, 1}J𝜏KI , we have that [[read 𝑖 := val(𝑣)] ∼ ` [read 𝑖 := val(𝑣)].
• Closure under evaluation: For any distributions [∼ `, if [⇓ [′ and ` ⇓ `′, then [′ ∼ `′.
• Valuation property: For any output channel 𝑜 and any distributions [∼ `, there exists a joint
convex combination [=

∑
𝑖B1,...,𝑘 𝑐𝑖[𝑖 ∼

∑
𝑖B1,...,𝑘 𝑐𝑖`𝑖 = ` such that for each 𝑖 B 1, . . . , 𝑘 ,

the distributions [𝑖 ∼ `𝑖 have the same value 𝑣 , or lack thereof, on the channel 𝑜 .

In the above definition, we write [[read 𝑖 := val(𝑣)] by applying the corresponding substitution

pointwise to each protocol in the support of [. Similarly, we write [⇓ [′ by expressing [=∑
𝑖 𝑐𝑖unit(𝑃𝑖) and evaluating 𝑃𝑖 ⇓ [′𝑖 to obtain [′ =

∑
𝑖 𝑐𝑖[

′
𝑖 .

Given the above notion of protocol bisimulation, we now state when exact and approximate

theories are sound:

Definition 4.15 (Soundness for Exact Theories). The exact theory T= is sound if for all Δ ⊢ 𝑃 = 𝑄 :

𝐼 → 𝑂 in T=, there exists a protocol bisimulation unit(𝑃) ∼ unit(𝑄).

Definition 4.16 (Soundness for Approximate Theories). The approximate theory T≈ is sound under

PPT interpretation I_ if, whenever {Δ_ ⊢ 𝑃_ ≈_ 𝑄_ : 𝐼_ → 𝑂_} ∈ T≈, we have that I_ ;Δ_ ⊨ 𝑃_ ≈_
𝑄_ : 𝐼_ → 𝑂_ .

Our main result is that if T= and T≈ are sound, then our proof rules for approximate equivalence

are sound:

Theorem 4.17 (Soundness theorem for the approximate eqality of IPDL protocols). Let
Σ be an IPDL signature, and let T= and T≈ be sound exact and approximate theories with respect to a
PPT interpretation {I_}. If ⊢ {Δ_ ⊢ 𝑃_ ≈_ 𝑄_ : 𝐼_ → 𝑂_}, then I_ ;Δ_ ⊨ 𝑃_ ≈_ 𝑄_ : 𝐼_ → 𝑂_ .

The proof of Theorem 4.17 relies on the following soundness lemmas for exact equality. First, we

have that exact equality guarantees observational equivalence:

Lemma 4.18 (Observational Eqivalence). Suppose unit(𝑃) ∼ unit(𝑄) under interpretation I.
Then, for any A and 𝑘 , and any well-typed IPDL context 𝐶 , Pr[A𝑘 (𝐶 (𝑃)I)] = Pr[A𝑘 (𝐶 (𝑄)I)].

Proof. An immediate consequence of the definition of protocol bisimulation. □

Next, we have that our proof system for exact equivalence is sound:

Lemma 4.19 (Soundness of Exact Eqivalence). Suppose T= is sound under interpretation I. If
Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂 , then unit(𝑃) ∼ unit(𝑄).

We establish Lemma 4.19 by exhibiting a bisimulation for each proof rule. Rules Sym and Trans

correspond to symmetry and transitivity lemmas for protocol bisimulation, while the congurence

rules comp-cong-left and cong-new require proving corresponding congruence rules for bisimu-

lations. For example, if [∼ `, then [| | 𝑄 ∼ ` | | 𝑄 (lifting | | to act on distributions).

Rules which manipulate reactions, such as subst, bind, and unused, require a notion of bisimu-

lation of reactions, along with a corresponding soundness lemma for reaction equality.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:22 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

Table 1. Case Studies in IPDL. Lines of code are separated into definitions (relevant IPDL axioms, function-

alities, and protocol parties) and proofs. The last column points out nontrivial cryptographic axioms and

functionalities used in the protocol.

Case study LoC (Defs) LoC (Proof) Axioms/Primitives Used

A2S: CPA [Maurer 2012] 97 LoC 128 LoC IND-CPA

A2S: DHKE [Barbosa et al. 2021b] 183 LoC 532 LoC DDH

OT: Trapdoor [Goldreich et al. 1987] 131 LoC 517 LoC Hard-core Predicates

OT: 1-out-of-4 [Naor and Pinkas 1999] 128 835 LoC Underlying OT

OT: Pre-Processing [Beaver 1995] 79 LoC 401 LoC Underlying OT

Two-Party GMW [Goldreich et al. 1987] 285 Loc 1859 LoC Underlying OT

Multi-Party Coin Flip [Blum 1983] 114 LoC 1905 LoC Commitments

5 IPDL CASE STUDIES
In this section, we briefly describe the case studies we have completed in IPDL, and outline several

key proof steps that conveniently employ equational reasoning. Our case studies range from simple

communication protocols to a two-party GMW protocol and a multi-party coin flip protocol. We

demonstrate through lines of code that the proof effort of IPDL scales well with increasing protocol

complexity, see Table 1. All lines of code count both protocol-specific definitions and proofs.

5.1 Coq Mechanization
We have mechanized the proof system of IPDL along with our case studies in Coq. The embedding

is shallow: we use functions in the metalanguage instead of function symbols derived from a

signature (e.g., xor over bitstrings). Channels are embedded shallowly as well, making use of an

abstract type chan t of channels of type t.
Throughout our developments, we take advantage of the metalanguage to define IPDL protocols

inductively based on parameters. For example, the parallel composition | |𝑞−1
𝑖=0

𝑃𝑖 is written in Coq

as \||_(i < q) P i, using the bigop library from ssreflect [Mahboubi and Tassi 2021].

Due to the shallow embedding, the mechanization has a few differences from the proof rules in

Section 4. The notion of size |𝑃 | for protocols does not track the size of reactions, since reactions

are embedded shallowly into Coq (and thus would require runtime analysis of Coq expressions).

In its place, one must check that all protocols used in the approximate congruence rules comp-

cong-left/comp-cong-right and cong-new only use efficiently computable functions, and use

fixed-size reactions. This check is easily guaranteed by all of our proofs. However, we do capture
the number of reactions used in protocols.

Additionally, we take advantage of channels being shallowly embedded to restrict inputs of

protocols based on scoping in Coq, rather than restricting them via the typing judgment.

Finally, for convenience we add an additional constructor, 0, to IPDL protocols, representing an

inert protocol, serving as an identity for parallel composition. The protocol 0 can easily be encoded

in IPDL as new 𝑐 : 1 in 𝑐 B ret (()).

5.2 Communication Protocols
We prove secure two different communication protocols that construct a secure communication

channel from an authenticated one. The authenticated channels allow the adversary to observe

in-flight messages and schedule delivery of them; in contrast, the secure communication channels

only allow the adversary to observe the presence of the channel, but none of the message contents.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:23

5.2.1 Secure Communication from CPA Security. This case study is a generalization of our example

from Section 3 to allow for the adversary to schedule delivery of each message. In line with

Section 3.1, we prove that a CPA-secure encryption scheme may be used alongside an authenticated

channel to achieve a secure one. This case study is similar to one used in other proof frameworks,

such as Constructive Cryptography [Maurer 2012].

5.2.2 One-Time Pad from Diffie-Hellman Key Exchange. We complete a one-time pad example

using Diffie-Hellman key exchange, in comparison with EasyUC [Canetti et al. 2019] and Barbosa

et al. [Barbosa et al. 2021b]. Similar to both, this example constructs a one-time use secure channel
by performing Diffie-Hellman key exchange to establish a shared secret, then using the shared

secret as a one-time pad. Our proof is similarly modular: we first prove the key exchange secure,

then prove the one-time pad protocol secure, assuming an idealized key exchange. The simulator

for the final protocol is naturally the composition of the simulators for the two sub-protocols.

We stress that while the comparable proof by Barbosa et al. [Barbosa et al. 2021b] is also relatively

short, the IPDL proof technique requires a much lower proof density than their formalization. Indeed,

our Coq proof involves one equational rewrite per line (e.g., substitute channel 𝑐 into channel

𝑑), while their proof requires hand-written explicit bisimulations on states. While succinct once

written, bisimulation relations are quite intricate and error-prone to invent.

5.3 OT Protocols
We next prove several Oblivious Transfer (OT) constructions secure. These examples are proven

in the semi-honest (or honest-but-curious) setting, where we assume the parties operate correctly,

but corrupted parties leak all private data to the adversary. We prove that leaked values reveal no

private information about the uncorrupted parties. To encode semi-honest corruption, we augment

the protocols with leakage functions that send all values visible to the corrupted party to the

adversary. In turn, the simulator must take as input the leakages in the ideal protocol (usually

minimal), and output suitable leakages in the real protocol.

In (1-out-of-2) OT, Bob wishes to obtain exactly one of Alice’s twomessages, without revealing his

choice [Goldreich et al. 1987]. Alice doesn’t learn which message Bob asked for, while Bob doesn’t

learn the other of the two messages. The ideal functionality simply receives the two messages

𝑚0,𝑚1 from the sender, the choice bit 𝑖 from the receiver, and outputs𝑚𝑖 . In each construction, we

analyze the most interesting case when the Bob is semi-honest and the Alice is honest. Hence, the

real-world leakages are derived solely from the input 𝑖 coming from the receiver and the output𝑚𝑖

coming from the ideal functionality, with no access to any information about message𝑚1−𝑖 .
We prove the security of three main OT constructions from the literature: first, we show that

1-out-of-4 OT, which is used by our GMW example, can be realized from three instances of an ideal

1-out-of-2 OT [Naor and Pinkas 1999]; then, we show a preprocessing result for OT, which allows

Alice and Bob to establish an OT in an offline phase, then use this OT for a fast online phase [Beaver

1995]; finally, we show that 1-out-of-2 OT can be realized using a trapdoor permutation and a

hard-core bit predicate [Goldreich et al. 1987].

To illustrate how IPDL allows us to carry out probabilistic reasoning, we outline here a few key

steps from the second construction. In the pre-processing phase, Alice randomly generates a new

pair of keys (𝑘0, 𝑘1), while Bob randomly decides on one of these keys, obtaining a choice bit 𝑗 .

They then use the underlying (idealized) OT to securely transfer the randomly chosen key 𝑘 𝑗 to

Bob.

In the online phase, Bob encrypts his actual choice bit 𝑖 by xor-ing it with 𝑗 , chosen randomly

in the prior phase. He sends his encrypted choice 𝑖 ⊕ 𝑗 to Alice, who responds by first swapping

her two keys if 𝑖 ⊕ 𝑗 is true, then sending Bob her two keys, xor-ed with their respective messages.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:24 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

Bob has enough information to recover his chosen message, but the other one appears uniformly

random.

To prove that Bob does not learn any information about the message he did not ask for, we carry

out two probabilistic arguments. The first, which we call decoupling, observes that selecting two
keys 𝑘0, 𝑘1 from the same distribution `, and then randomly deciding to return either (𝑘0, 𝑘1) or
(𝑘1, 𝑘0) is perfectly indistinguishable from just returning (𝑘0, 𝑘1). To see this, consider the protocol

below:

KeyPair B 𝑓 ← samp (flip); if 𝑓 then 𝑘0 ← samp (`); 𝑘1 ← samp (`); ret ((𝑘1, 𝑘0))
KeyPair B 𝑓 ← Flip; if 𝑓 else 𝑘0 ← samp (`); 𝑘1 ← samp (`); ret ((𝑘0, 𝑘1))

Since the two samplings inside each branch of the if are interchangeable, we may commute

𝑘0 ← samp (`) with 𝑘1 ← samp (`) inside of the then branch. This shows that the two branches

behave exactly the same, so we may just as well not flip. We emphasize that no complex probabilistic

reasoning is necessary in the argument, but only a few simple application of equational proof rules.

The second probabilistic argument concerns the distribution `, which represents uniform ran-

domness. Rather than modeling uniform randomness intrinsically in Coq, we only need to introduce

the (sound) axiom that ` = (𝑥 ← `; unit(𝑥 ⊕ 𝑦)) for any bitstring 𝑦. We include a full proof of this

case study in our repository [Gancher et al. 2022].

5.4 Two-Party GMW Protocol
Our first large case study for IPDL is the GMW protocol [Goldreich et al. 1987], where two parties

securely compute a function given by an arbitrary Boolean circuit. The protocol utilizes a 1-out-of-4

OT instance for each multiplication gate in the circuit. We analyze the GMW protocol in the

semi-honest setting, with Alice (the sender of the OTs) corrupted.

Taking advantage of Coq as our metalanguage, we prove the GMW protocol secure for arbitrary
circuits. We model circuits in Coq as finitely supported functions from wire IDs [1, . . . , 𝑛] to
operations, where each operation may only reference wires that have been previously defined. Our

model supports multiple circuit outputs and is reactive, in that the protocol does not dictate that all

inputs must come in before starting the computation. Similarly, outputs are shared as soon as they

are available, which may happen before other, unrelated inputs arrive. Our ideal functionality is

similarly reactive.

The simulator for the GMW proof operates by evaluating a censored version of the real protocol

in its head, having access to only Alice’s private data (since she is corrupt), but not Bob’s. The

proof proceeds by establishing an inductive invariant between the real protocol and the ideal

functionality: Bob’s view of wire𝑤 in the real protocol is equal to the xor of the true value of𝑤 ,

along with Alice’s simulated view (coming from the simulator).

5.5 Multi-Party Coin Flip Protocol
Our second large case study is for a protocol that allows an arbitrary number of mutually distrusting

parties to collaboratively generate fair randomness, due to Blum [Blum 1983]. To do so, each

party locally generates randomness, and commits it to all other parties. We assume an idealized

commitment functionality which also bakes in a notion of broadcast, to prevent equivocation. Each

party decommits their randomness once all other commitments have been collected; the output of

the protocol is the Boolean sum of all decommitments.

Unlike previous examples, this example is secure in the malicious model. We model malicious

parties by assigning them a shell, which simply forwards all information between the protocol and

the adversary. The entire worked-out example is available in our repostiroy [Gancher et al. 2022].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:25

5.6 Proof Effort
We have collected our case studies and their required lines of code in Table 1, in ascending order

of complexity. All proof scripts for the case studies, together with the IPDL Coq library, take less

than five minutes to verify on a 2020 MacBook Pro. Most proofs take only a few seconds to verify,

while some – such as our Multi-Party Coin Flip example, or the 1-out-of-4 OT example – take a

few minutes, due to the use of Coq tactics to aid verification.

We highlight our example of Diffie-Hellman Key Exchange + OTP, which totals 736 lines of code

for definitions and proofs. This compares favorably to EasyUC [Canetti et al. 2019], which performs

a similar case study using 18,000 lines of code in EasyCrypt [Barthe et al. 2011], and Barbosa

et al. [Barbosa et al. 2021b], which takes over 2000 lines of code, also in EasyCrypt (albeit with

reasoning about running time, which we do not explicitly perform). While difficult to compare line

counts exactly, our relative simplicity is derived from the use of a high-level logic for cryptographic

protocols along with a lack of hand-written bisimulations. Achieving similarly concise proofs in

EasyCrypt will likely require further engineering for proof automation.

The largest examples – the Two-Party GMW, and the Multi-Party Coin Flip – are less than 2200

lines of code. While the number of lines is moderate, the complexity of the proof script is low: most

of the lines consist of repetitive tactic invocations and intermediate rewriting steps. These proofs

can be likely condensed further with additional proof engineering.

6 CONCLUSION AND FUTUREWORK
We introduce IPDL, a core language and proof system for equational security proofs of cryptographic

protocols. Our core technical result is that IPDL is computationally sound: approximate equivalences

in IPDL are sound against arbitrary probabilistic polynomial-time adversaries. We demonstrate the

use of IPDL in a number of case studies, including the GMW protocol [Goldreich et al. 1987] for

multi-party computation. All case studies have been mechanized in an embedding of IPDL in Coq.

We now outline a few directions for future work:

Proof Automation. While we explored the use of interactive equational proofs in this work, we

expect IPDL proofs to be amenable to proof automation. Indeed, directed applications of substitution

and channel folding could likely drive a proof engine towards dischargingmany low-level equational

steps, leaving the user to only specify a high-level outline of the proof.

Integration with Cryptographic Proof Assistants. As described in the introduction, IPDL is not

designed to handle all subtleties of cryptographic proofs, such as rewinding, probabilistic coupling

arguments, or complex cost analysis, all of which are expressible in probabilistic program logics

such as EasyCrypt [Barbosa et al. 2021b; Barthe et al. 2011; Firsov and Unruh 2022]. Combining the

simplicity of IPDL with the expressivity of EasyCrypt is likely to enable new proof developments

which are out of reach of each system individually.

ACKNOWLEDGEMENTS
This material is based upon work supported by the National Science Foundation under Grants

No. 1704788 and No. 1801369. This work was partly supported by ANR TECAP (decision number

ANR-17-CE39-0004-03). This work was also supported by a Packard Fellowship and an ONR YIP

award. This project was partially funded through the NGI Assure Fund, a fund established by NLnet

with financial support from the European Commission’s Next Generation Internet programme,

under the aegis of DG Communications Networks, Content and Technology under grant agreement

No 957073.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:26 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

A ADDITIONAL FIGURES

|𝑥 | := 1

|✓ | := 1

|true| := 1

|false| := 1

|f 𝑒 | := |𝑒 | + 1
| (𝑒1, 𝑒2) | := |𝑒1 | + |𝑒2 |
|fst 𝑒 | := |𝑒 | + 1
|snd 𝑒 | := |𝑒 | + 1
|flip| := 1

|d 𝑒 | := |𝑒 | + 1

|ret (𝑒) | := |𝑒 |
|samp (𝐷) | := |𝐷 |
|read 𝑐 | := 1

|if 𝑒 then 𝑅1 else 𝑅2 | := |𝑒 | +max(|𝑅1 |, |𝑅2 |)
|𝑥 : 𝜏 ← 𝑅; 𝑆 | := |𝑅 | + |𝑆 |

|𝑜 B 𝑅 | := |𝑅 |
|𝑃1 | | 𝑃2 | := |𝑃1 | + |𝑃2 |

|new 𝑐 : 𝜏 in 𝑃 | := |𝑃 |

| ◦ | B 0

\★(C)	B	C				
C		𝑄	B	C	+	𝑄
𝑃		C	B	𝑃	+	C

|new 𝑜 : 𝜏 in C| B |C|.

Fig. 13. Symbolic sizes | · | in IPDL. Left: sizes for expressions and distributions. Middle: sizes for reactions

and protocols. Right: sizes for protocol contexts.

C : (Δ1 ⊢Σ 𝐼1 → 𝑂1) → (Δ2 ⊢Σ 𝐼2 → 𝑂2) ◦ : (Δ ⊢Σ 𝐼 → 𝑂) → (Δ ⊢Σ 𝐼 → 𝑂)

\ : Δ1 → Δ2 C : (Δ★ ⊢Σ 𝐼★→ 𝑂★) → (Δ2 ⊢Σ 𝐼 → 𝑂)
\★(C) : (Δ★ ⊢Σ 𝐼★→ 𝑂★) → (Δ1 ⊢Σ \★(𝐼) → \★(𝑂))

C : (Δ★ ⊢Σ 𝐼★→ 𝑂★) → (Δ ⊢Σ 𝐼 ∪𝑂2 → 𝑂1) Δ ⊢Σ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2

C || 𝑄 : (Δ★ ⊢Σ 𝐼★→ 𝑂★) → (Δ ⊢ 𝐼 → 𝑂1 ∪𝑂2)

Δ ⊢Σ 𝑃 : 𝐼 ∪𝑂2 → 𝑂1 C : (Δ★ ⊢Σ 𝐼★→ 𝑂★) → (Δ ⊢Σ 𝐼 ∪𝑂1 → 𝑂2)
𝑃 | | C : (Δ★ ⊢Σ 𝐼★→ 𝑂★) → (Δ ⊢Σ 𝐼 → 𝑂1 ∪𝑂2)

C : (Δ★ ⊢Σ 𝐼★→ 𝑂★) → (Δ, 𝑜 : 𝐴 ⊢Σ 𝐼 → 𝑂 ∪ {𝑜})
new 𝑜 : 𝐴 in C : (Δ★ ⊢Σ 𝐼★→ 𝑂★) → (Δ ⊢Σ 𝐼 → 𝑂)

Fig. 14. Typing for IPDL contexts.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:27

Δ; Γ ⊢ 𝑅1 = 𝑅2 : 𝐼 → 𝜏

Γ ⊢ 𝑒 : 𝜏 Δ; Γ, 𝑥 : 𝜏 ⊢ 𝑅 : 𝐼 → 𝜎

Δ; Γ ⊢ (𝑥 ← ret (𝑒); 𝑅) = 𝑅 [𝑥 B 𝑒] : 𝐼 → 𝜎
ret-bind

Δ; Γ ⊢ 𝑅 : 𝐼 → 𝜏

Δ; Γ ⊢ (𝑥 ← 𝑅; ret (𝑥)) = 𝑅 : 𝐼 → 𝜏
bind-ret

Δ; Γ ⊢ 𝑅1 : 𝐼 → 𝜏1 Δ; Γ, 𝑥1 : 𝜏1 ⊢ 𝑅2 : 𝐼 → 𝜏2 Δ; Γ, 𝑥2 : 𝜏2 ⊢ 𝑅3 : 𝐼 → 𝜏3

Δ; Γ ⊢
(
𝑥2 : 𝜏2 ← (𝑥1 : 𝜏1 ← 𝑅1; 𝑅2); 𝑅3

)
= (𝑥1 : 𝜏1 ← 𝑅1; 𝑥2 : 𝜏2 ← 𝑅2; 𝑅3) : 𝐼 → 𝜏3

bind-bind

Δ; Γ ⊢ 𝑅1 : 𝐼 → 𝜏1 Δ; Γ ⊢ 𝑅2 : 𝐼 → 𝜏2 Δ; Γ, 𝑥1 : 𝜏1, 𝑥2 : 𝜏2 ⊢ 𝑆 : 𝐼 → 𝜎

Δ; Γ ⊢ (𝑥1 : 𝜏1 ← 𝑅1; 𝑥2 : 𝜏2 ← 𝑅2; 𝑆) = (𝑥2 : 𝜏2 ← 𝑅2; 𝑥1 : 𝜏1 ← 𝑅1; 𝑆) : 𝐼 → 𝜎
exch

Γ ⊢ 𝑑 : 𝜏 Δ; Γ ⊢ 𝑆 : 𝐼 → 𝜎

Δ; Γ ⊢ (𝑥 : 𝜏 ← samp (𝐷); 𝑆) = 𝑆 : 𝐼 → 𝜎
samp-pure

𝑖 : 𝜏 ∈ Δ 𝑖 ∈ 𝐼 Δ; Γ, 𝑥 : 𝜏,𝑦 : 𝜏 ⊢ 𝑆 : 𝜎

Δ; Γ ⊢ (𝑥 : 𝜏 ← read 𝑖; 𝑦 : 𝜏 ← read 𝑖; 𝑆) =
(
𝑥 : 𝜏 ← read 𝑖; 𝑆 [𝑦 B 𝑥]

)
: 𝐼 → 𝜎

read-det

Δ; Γ ⊢ (𝑥 ← samp (flip); if 𝑥 then false else true) = samp (flip) : 𝐼 → bool

flip-unif

Δ; Γ ⊢ 𝑅1 : 𝐼 → 𝜏 Δ; Γ ⊢ 𝑅2 : 𝐼 → 𝜏

Δ; Γ ⊢ if true then 𝑅1 else 𝑅2 = 𝑅1 : 𝐼 → 𝜏
if-left

Δ; Γ ⊢ 𝑅1 : 𝐼 → 𝜏 Δ; Γ ⊢ 𝑅2 : 𝐼 → 𝜏

Δ; Γ ⊢ if false then 𝑅1 else 𝑅2 = 𝑅2 : 𝐼 → 𝜏
if-right

Δ; Γ, 𝑥 : bool ⊢ 𝑅 : 𝐼 → 𝜏 Γ ⊢ 𝑒 : bool
Δ; Γ ⊢ 𝑅 [𝑥 B 𝑒] = if 𝑒 then 𝑅 [𝑥 B true] else 𝑅(𝑥 B false) : 𝐼 → 𝜏

if-ext

Fig. 15. Equality for IPDL reactions.

B SOUNDNESS FOR IPDL

We prove soundness for IPDL through proving soundness for the exact fragment (Lemma 4.19),

then proving soundness for the approximate fragment (Lemma ??).

B.1 Soundness for Exact Fragment
Throughout, we use an implicit interpretation I, interpreting the semantics J·K. Soundness of
equality at the expression level means that if we substitute the same valued expression for each

free variable, the resulting closed expressions will compute to the same value:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:28 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

Definition B.1. An axiom Γ ⊢ 𝑒1 = 𝑒2 : 𝜏 is sound if for any valued substitution \ : · → Γ, we
have that \★(𝑒1) ⇓ 𝑣 and \★(𝑒2) ⇓ 𝑣 for the same value 𝑣 ∈ {0, 1}J𝜏K.

The ambient IPDL theory for expressions is said to be sound if each of its axioms is sound. It is

straightforward to show that this implies overall soundness:

Lemma B.2 (Soundness of eqality of expressions). If the ambient IPDL theory for expressions
is sound, then for any equal expressions Γ ⊢ 𝑒1 = 𝑒2 : 𝜏 and any valued substitution \ : · → Γ, we have
that \★(𝑒1) ⇓ 𝑣 and \★(𝑒1) ⇓ 𝑣 for the same value 𝑣 ∈ {0, 1}J𝜏K.

At the reaction level, two equal reactions should behave in a way that is indistinguishable by

an external observer. We formally capture this notion of indistinguishability by a logical relation

known as a bisimulation – a binary relation on measures on reactions that satisfies certain closure

properties, together with the crucial valuation property that allows us to jointly partition two

related measures so that any two corresponding components are again related and have the same

value: a reaction 𝑅 is said to have value 𝑣 if 𝑅 is of the form val 𝑣 (otherwise the value is undefined),

and we lift this notion to measures on reactions in the obvious way. At the reaction level, we only

require the valuation property for measures that are final, i.e., no reaction in the support steps.

We work with (finitely-supported) measures rather than just distributions purely out of conve-

nience; importantly, however, we rule out the zero measure. We denote the total measure assigned

by a measure [to the set of all reactions by Σ[.

Definition B.3 (Reaction bisimulation). A reaction bisimulation ∼ is a binary relation on measures

on reactions Δ; · ⊢ 𝑅 : 𝐼 → 𝜏 satisfying the following conditions:

• Closure under input assignment: For any measures [∼ Y, input channel 𝑖 ∈ 𝐼 of type 𝜏 , and
value 𝑣 ∈ {0, 1}J𝜏K, we have [[read 𝑖 B val 𝑣] ∼ Y [read 𝑖 B val 𝑣].
• Closure under computation: For any measures [∼ Y, if [⇓ [′ and Y ⇓ Y′, then [′ ∼ Y′.
• Measure property: For any measures [∼ Y, we have Σ[= Σ Y.
• Valuation property: For any measures [∼ Y that are final, there exists a joint sum

[=
∑︁
𝑖

[𝑖 ∼
∑︁
𝑖

Y𝑖 = Y

such that

– the respective components [𝑖 ∼ Y𝑖 are again related, and

– the measures [𝑖 and Y 𝑗 have the same value 𝑣 , or lack thereof, if and only if 𝑖 = 𝑗 .

Crucially, we note that the joint sum in the valuation property is unique up to the order of the

summands.

Lemma B.4. We have the following:
• The identity relation is a reaction bisimulation.
• The inverse of a reaction bisimulation is a reaction bisimulation.
• The composition of two reaction bisimulations is a reaction bisimulation.

We now describe one canonical way to construct reaction bisimulations:

Definition B.5. Let ∼ be an arbitrary binary relation on measures on reactions Δ; · ⊢ 𝑅 : 𝐼 → 𝜏 .

The lifting ∼L is the closure of ∼ under joint linear combinations. Explicitly, ∼L is defined by∑︁
𝑖

𝑐𝑖 [𝑖 ∼L
∑︁
𝑖

𝑐𝑖 Y𝑖

for coefficients 𝑐𝑖 > 0 and measures [𝑖 ∼ Y𝑖 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:29

Lemma B.6. Let ∼ be a binary relation on measures on reactions Δ; · ⊢ 𝑅 : 𝐼 → 𝜏 with the following
properties:
• Closure under input assignment: For any measures [∼ Y, input channel 𝑖 ∈ 𝐼 of type 𝜏 , and
value 𝑣 ∈ {0, 1}J𝜏K, we have [[read 𝑖 B val 𝑣] ∼ Y [read 𝑖 B val 𝑣].
• Lifting closure under computation: For any measures [∼ Y, if [⇓ [′ and Y ⇓ Y′, then [′ ∼L Y′.
• Measure property: For any measures [∼ Y, we have Σ[= Σ Y.
• Valuation property: For any measures [∼ Y that are final, there exists a joint sum

[=
∑︁
𝑖

[𝑖 ∼
∑︁
𝑖

Y𝑖 = Y

such that
– the respective components [𝑖 ∼ Y𝑖 are again related, and
– the measures [𝑖 and Y 𝑗 have the same value 𝑣 , or lack thereof, if and only if 𝑖 = 𝑗 .

Then the lifting ∼L is a reaction bisimulation.

Example B.7. If the expressions · ⊢ 𝑒1 : 𝜎 and · ⊢ 𝑒2 : 𝜎 evaluate to the same value 𝑣 ∈ {0, 1}J𝜎K
,

then the relation ∼ defined by

• unit(𝑅(𝑥 B 𝑒1)) ∼ unit(𝑅(𝑥 B 𝑒2)) for reaction Δ; 𝑥 : 𝜎 ⊢ 𝑅 : 𝐼 → 𝜏

satisfies the hypotheses of Lemma B.6. In particular, ∼L is a reaction bisimulation.

Having defined reaction bisimulations, we can now formally state what it means for reaction

equality to be sound:

Definition B.8. An axiom Δ; Γ ⊢ 𝑅1 = 𝑅2 : 𝐼 → 𝜏 is sound if there is a reaction bisimulation ∼
such that for any valued substitution \ : · → Γ, we have unit(\★(𝑅1)) ∼ unit(\★(𝑅2)).

The ambient IPDL theory for reactions is said to be sound if each of its axioms is sound. We now

show that this implies overall soundness:

Lemma B.9 (Soundness of eqality of reactions). If the ambient IPDL theory for reactions
is sound, then for any equal reactions Δ; Γ ⊢ 𝑅1 = 𝑅2 : 𝐼 → 𝜏 , there exists a reaction bisimulation ∼
such that for any valued substitution \ : · → Γ, we have unit(\★(𝑅1)) ∼ unit(\★(𝑅2)).

Proof. We first replace the exchange rule exch by the three rules exch-samp-samp, exch-samp-

read, and exch-read-read in Figure 16; it is easy to see that this new set of rules is equivalent to

the original one. We now proceed by induction on the alternative set of rules for reaction equality.

We will freely use a measure in place of a value (rule exch-samp-read) or a reaction (rules embed,

cong-bind) to indicate the obvious lifting of the corresponding construct to measures on reactions.

• refl: Our desired bisimulation is the identity relation.

• sym: Our desired bisimulation is the inverse of the bisimulation obtained from the premise.

• trans: Our desired bisimulation is the composition of the two bisimulations obtained from

the two premises.

• axiom: The desired bisimulation exists by assumption.

• subst: Our desired bisimulation is precisely the bisimulation obtained from the premise.

• embed: Let ∼ be the bisimulation obtained from the premise. Our desired bisimulation ∼𝜙 is

defined by

– 𝜙★([) ∼𝜙 𝜙★(Y) if [∼ Y
• input-unused: Our desired bisimulation is precisely the bisimulation obtained from the

premise, seen as a bisimulation on measures on reactions with the additional input 𝑖 .

• cong-ret: Our desired bisimulation is the lifting of the relation ∼ defined by

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:30 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

– unit(ret (𝑒)) ∼ unit(ret (𝑒′)) for
∗ expressions · ⊢ 𝑒 : 𝜏 and · ⊢ 𝑒′ : 𝜏 , and value 𝑣 ∈ {0, 1}J𝜏K such that 𝑒 ⇓ 𝑣 and 𝑒′ ⇓ 𝑣

– unit(val 𝑣) ∼ unit(val 𝑣) for value 𝑣 ∈ {0, 1}J𝜏K
• cong-samp: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(samp ((d 𝑒))) ∼ unit(samp ((d 𝑒′))) for
∗ expressions · ⊢ 𝑒 : 𝜎 and · ⊢ 𝑒′ : 𝜎 , and value 𝑣 ∈ {0, 1}J𝜎K

such that 𝑒 ⇓ 𝑣 and 𝑒′ ⇓ 𝑣
– unit(val 𝑣) ∼ unit(val 𝑣) for value 𝑣 ∈ {0, 1}J𝜏K
• cong-if: Let ∼1 and ∼2 be the two bisimulations obtained from the two premises. Our desired

bisimulation is the lifting of the relation ∼if defined by

– unit(if 𝑒 then 𝑅1 else 𝑅2) ∼if unit(if 𝑒′ then 𝑅′
1
else 𝑅′

2
) for

∗ expressions · ⊢ 𝑒 : bool and · ⊢ 𝑒′ : bool, and value 𝑣 ∈ {0, 1} such that 𝑒 ⇓ 𝑣 and 𝑒′ ⇓ 𝑣
∗ reactions Δ; · ⊢ 𝑅1 : 𝐼 → 𝜏 and Δ; · ⊢ 𝑅′

1
: 𝐼 → 𝜏 such that unit(𝑅1) ∼1 unit(𝑅′1)

∗ reactions Δ; · ⊢ 𝑅2 : 𝐼 → 𝜏 and Δ; · ⊢ 𝑅′
2
: 𝐼 → 𝜏 such that unit(𝑅2) ∼2 unit(𝑅′2)

– [1 ∼if [′1 if [1 ∼1 [′1
– [2 ∼if [′2 if [2 ∼2 [′2
• cong-bind: Let ∼1 and ∼2 be the two bisimulations obtained from the two premises. Our

desired bisimulation is the lifting of the relation ∼bind defined by

– (𝑥 ← [; 𝑆) ∼bind (𝑥 ← [′; 𝑆 ′) for
∗ measures [∼1 [′
∗ reactions Δ; 𝑥 : 𝜎 ⊢ 𝑆 : 𝐼 → 𝜏 and Δ; 𝑥 : 𝜎 ⊢ 𝑆 ′ : 𝐼 → 𝜏 such that for any value

𝑣 ∈ {0, 1}J𝜎K
, we have unit(𝑆 (𝑥 B 𝑣)) ∼2 unit(𝑆 ′ (𝑥 B 𝑣))

– Y ∼bind Y′ if Y ∼2 Y′
• ret-bind: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑥 ← ret (𝑒); 𝑅) ∼ unit(𝑅(𝑥 B 𝑒)) for expression · ⊢ 𝑒 : 𝜎 and reaction Δ; 𝑥 : 𝜎 ⊢ 𝑅 :

𝐼 → 𝜏

– unit(𝑅(𝑥 B 𝑣)) ∼ unit(𝑅(𝑥 B 𝑒)) for
∗ reaction Δ; 𝑥 : 𝜎 ⊢ 𝑅 : 𝐼 → 𝜏

∗ expression · ⊢ 𝑒 : 𝜎 and value 𝑣 ∈ {0, 1}J𝜎K
such that 𝑒 ⇓ 𝑣

• bind-ret: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑥 ← 𝑅; ret (𝑥)) ∼ unit(𝑅) for reaction Δ; · ⊢ 𝑅 : 𝐼 → 𝜏

– unit(val 𝑣) ∼ unit(val 𝑣) for value 𝑣 ∈ {0, 1}J𝜏K
• bind-bind: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑥2 ← (𝑥1 ← 𝑅1; 𝑅2); 𝑆) ∼ unit(𝑥1 ← 𝑅1; 𝑥2 ← 𝑅2; 𝑆) for
∗ reaction Δ; · ⊢ 𝑅1 : 𝐼 → 𝜎1
∗ reaction Δ; 𝑥1 : 𝜎1 ⊢ 𝑅2 : 𝐼 → 𝜎2
∗ reaction Δ; 𝑥2 : 𝜎2 ⊢ 𝑆 : 𝐼 → 𝜏

– unit(𝑥2 ← 𝑅2; 𝑆) ∼ unit(𝑥2 ← 𝑅2; 𝑆) for
∗ reaction Δ; · ⊢ 𝑅2 : 𝐼 → 𝜎2
∗ reaction Δ; 𝑥2 : 𝜎2 ⊢ 𝑆 : 𝐼 → 𝜏

– unit(𝑆) ∼ unit(𝑆) for reaction Δ; · ⊢ 𝑆 : 𝐼 → 𝜏

• samp-pure: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑥 ← samp ((d 𝑒)); 𝑅) ∼ unit(𝑅) for reaction Δ; · ⊢ 𝑅 : 𝐼 → 𝜏

– unit(𝑅) ∼ unit(𝑅) for reaction Δ; · ⊢ 𝑅 : 𝐼 → 𝜏

• read-det: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑥 ← read 𝑖; 𝑦 ← read 𝑖; 𝑅) ∼ unit(𝑥 ← read 𝑖; 𝑅(𝑦 B 𝑥)) for reaction Δ; 𝑥 : 𝜎,𝑦 :

𝜎 ⊢ 𝑅 : 𝐼 → 𝜏

– unit(𝑥 ← val 𝑣 ; 𝑦 ← val 𝑣 ; 𝑅) ∼ unit(𝑥 ← val 𝑣 ; 𝑅(𝑦 B 𝑥)) for

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:31

∗ reaction Δ; 𝑥 : 𝜎,𝑦 : 𝜎 ⊢ 𝑅 : 𝐼 → 𝜏

∗ value 𝑣 ∈ {0, 1}J𝜎K

– unit(𝑅) ∼ unit(𝑅) for reaction Δ; · ⊢ 𝑅 : 𝐼 → 𝜏

• if-left: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(if true then 𝑅1 else 𝑅2) ∼ unit(𝑅1) for reactions Δ; · ⊢ 𝑅1 : 𝐼 → 𝜏 and Δ; · ⊢ 𝑅2 : 𝐼 → 𝜏

– unit(𝑅1) ∼ unit(𝑅1) for reaction Δ; · ⊢ 𝑅1 : 𝐼 → 𝜏

• if-right: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(if false then 𝑅1 else 𝑅2) ∼ unit(𝑅2) for valued reactions Δ; · ⊢ 𝑅1 : 𝐼 → 𝜏 and

Δ; · ⊢ 𝑅2 : 𝐼 → 𝜏

– unit(𝑅2) ∼ unit(𝑅2) for reaction Δ; · ⊢ 𝑅2 : 𝐼 → 𝜏

• if-ext: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑅(𝑥 B 𝑒)) ∼ unit(if 𝑒 then 𝑅(𝑥 B true) else 𝑅(𝑥 B false)) for
∗ reaction Δ; 𝑥 : bool ⊢ 𝑅 : 𝐼 → 𝜏

∗ expression · ⊢ 𝑒 : bool
– unit(𝑅(𝑥 B 𝑒)) ∼ unit(𝑅(𝑥 B true)) for
∗ reaction Δ; 𝑥 : bool ⊢ 𝑅 : 𝐼 → 𝜏

∗ expression · ⊢ 𝑒 : bool such that 𝑒 ⇓ 1
– unit(𝑅(𝑥 B 𝑒)) ∼ unit(𝑅(𝑥 B false)) for
∗ reaction Δ; 𝑥 : bool ⊢ 𝑅 : 𝐼 → 𝜏

∗ expression · ⊢ 𝑒 : bool such that 𝑒 ⇓ 0
• exch-samp-samp: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑥1 ← samp ((d1 𝑒1)); 𝑥2 ← samp ((d2 𝑒2)); ret ((𝑥1, 𝑥2))) ∼
unit(𝑥2 ← samp ((d2 𝑒2)); 𝑥1 ← samp ((d1 𝑒1)); ret ((𝑥1, 𝑥2))) for
∗ expressions · ⊢ 𝑒1 : 𝜎1 and · ⊢ 𝑒2 : 𝜎2

– unit(val 𝑣1𝑣2) ∼ unit(val 𝑣1𝑣2) for values 𝑣1 ∈ {0, 1}J𝜏1K and 𝑣2 ∈ {0, 1}J𝜏2K
• exch-samp-read: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑥1 ← samp ((d 𝑒)); 𝑥2 ← read 𝑖; ret ((𝑥1, 𝑥2))) ∼ unit(𝑥2 ← read 𝑖; 𝑥1 ←
samp ((d 𝑒)); ret ((𝑥1, 𝑥2))) for
∗ expression · ⊢ 𝑒 : 𝜎

– unit(𝑥1 ← samp ((d 𝑒)); 𝑥2 ← val 𝑣2; ret ((𝑥1, 𝑥2))) ∼ unit(𝑥2 ← val 𝑣2; 𝑥1 ←
samp ((d 𝑒)); ret ((𝑥1, 𝑥2))) for
∗ expression · ⊢ 𝑒 : 𝜎
∗ value 𝑣2 ∈ {0, 1}J𝜏2K

–
(
𝑥2 ← read 𝑖; ret ((JdK(𝑣), 𝑥2))

)
∼ unit(𝑥2 ← read 𝑖; 𝑥1 ← samp ((d 𝑒)); ret ((𝑥1, 𝑥2)))

for

∗ expression · ⊢ 𝑒 : 𝜎 and value 𝑣 ∈ {0, 1}J𝜎K
such that 𝑒 ⇓ 𝑣

–
(
𝑥2 ← val 𝑣2; ret ((JdK(𝑣), 𝑥2))

)
∼ unit(𝑥2 ← val 𝑣2; 𝑥1 ← samp ((d 𝑒)); ret ((𝑥1, 𝑥2)))

for

∗ expression · ⊢ 𝑒 : 𝜎 and value 𝑣 ∈ {0, 1}J𝜎K
such that 𝑒 ⇓ 𝑣

∗ value 𝑣2 ∈ {0, 1}J𝜏2K
– unit(val 𝑣1𝑣2) ∼ unit(val 𝑣1𝑣2) for values 𝑣1 ∈ {0, 1}J𝜏1K and 𝑣2 ∈ {0, 1}J𝜏2K
• exch-read-read: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑥1 ← read 𝑖1; 𝑥2 ← read 𝑖2; ret ((𝑥1, 𝑥2))) ∼ unit(𝑥2 ← read 𝑖2; 𝑥1 ← read 𝑖1; ret ((𝑥1, 𝑥2)))
– unit(𝑥1 ← val 𝑣1; 𝑥2 ← read 𝑖2; ret ((𝑥1, 𝑥2))) ∼ unit(𝑥2 ← read 𝑖2; 𝑥1 ← val 𝑣1; ret ((𝑥1, 𝑥2)))
for

∗ value 𝑣1 ∈ {0, 1}J𝜏1K

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:32 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

– unit(𝑥1 ← read 𝑖1; 𝑥2 ← val 𝑣2; ret ((𝑥1, 𝑥2))) ∼ unit(𝑥2 ← val 𝑣2; 𝑥1 ← read 𝑖1; ret ((𝑥1, 𝑥2)))
for

∗ value 𝑣2 ∈ {0, 1}J𝜏2K
– unit(𝑥1 ← val 𝑣1; 𝑥2 ← val 𝑣2; ret ((𝑥1, 𝑥2))) ∼ unit(𝑥2 ← val 𝑣2; 𝑥1 ← val 𝑣1; ret ((𝑥1, 𝑥2)))
for

∗ values 𝑣1 ∈ {0, 1}J𝜏1K and 𝑣2 ∈ {0, 1}J𝜏2K
– unit(𝑥2 ← read 𝑖2; ret ((𝑣1, 𝑥2))) ∼ unit(𝑥2 ← read 𝑖2; 𝑥1 ← val 𝑣1; ret ((𝑥1, 𝑥2))) for
value 𝑣1 ∈ {0, 1}J𝜏1K

– unit(𝑥1 ← read 𝑖1; 𝑥2 ← val 𝑣2; ret ((𝑥1, 𝑥2))) ∼ unit(𝑥1 ← read 𝑖1; ret ((𝑥1, 𝑣2))) for
value 𝑣2 ∈ {0, 1}J𝜏2K

– unit(𝑥2 ← val 𝑣2; ret ((𝑣1, 𝑥2))) ∼ unit(𝑥2 ← val 𝑣2; 𝑥1 ← val 𝑣1; ret ((𝑥1, 𝑥2))) for
∗ values 𝑣1 ∈ {0, 1}J𝜏1K and 𝑣2 ∈ {0, 1}J𝜏2K

– unit(𝑥1 ← val 𝑣1; 𝑥2 ← val 𝑣2; ret ((𝑥1, 𝑥2))) ∼ unit(𝑥1 ← val 𝑣1; ret ((𝑥1, 𝑣2))) for
∗ values 𝑣1 ∈ {0, 1}J𝜏1K and 𝑣2 ∈ {0, 1}J𝜏2K

– unit(val 𝑣1𝑣2) ∼ unit(val 𝑣1𝑣2) for values 𝑣1 ∈ {0, 1}J𝜏1K and 𝑣2 ∈ {0, 1}J𝜏2K

□

d1 : 𝜎1 → 𝜏1, d2 : 𝜎2 → 𝜏2 ∈ Σ Γ ⊢ 𝑒1 : 𝜎1 Γ ⊢ 𝑒2 : 𝜎2
Δ; Γ ⊢

(
𝑥1 : 𝜏1 ← samp ((d1 𝑒1)); 𝑥2 : 𝜏2 ← samp ((d2 𝑒2)); ret ((𝑥1, 𝑥2))

)
=(

𝑥2 : 𝜏2 ← samp ((d2 𝑒2)); 𝑥1 : 𝜏1 ← samp ((d1 𝑒1)); ret ((𝑥1, 𝑥2))
)
: 𝐼 → 𝜏1 × 𝜏2

exch-samp-samp

d : 𝜎 → 𝜏1 ∈ Σ Γ ⊢ 𝑒 : 𝜎 𝑖 : 𝜏2 ∈ Δ 𝑖 ∈ 𝐼
Δ; Γ ⊢

(
𝑥1 : 𝜏1 → samp ((d 𝑒)); 𝑥2 : 𝜏2 ← read 𝑖; ret ((𝑥1, 𝑥2))

)
=(

𝑥2 : 𝜏2 ← read 𝑖; 𝑥1 : 𝜏1 ← samp ((d 𝑒)); ret ((𝑥1, 𝑥2))
)
: 𝐼 → 𝜏1 × 𝜏2

exch-samp-read

𝑖1 : 𝜏1, 𝑖2 : 𝜏2 ∈ Δ 𝑖1, 𝑖2 ∈ 𝐼
Δ; Γ ⊢

(
𝑥1 : 𝜏1 ← read 𝑖1; 𝑥2 : 𝜏2 ← read 𝑖2; ret ((𝑥1, 𝑥2))

)
=(

𝑥2 : 𝜏2 ← read 𝑖2; 𝑥1 : 𝜏1 ← read 𝑖1; ret ((𝑥1, 𝑥2))
)
: 𝐼 → 𝜏1 × 𝜏2

exch-read-read

Fig. 16. Alternative formulation of the exch rule for reaction equality.

At last we get to the protocol level. A protocol bisimulation is entirely analogous to a reaction

bisimulation, except we require the valuation property to hold: i) per output channel 𝑜 , and ii) for
all measures (not necessarily final).

Definition B.10 (Protocol bisimulation). A protocol bisimulation ∼ is a binary relation on measures

on protocols Δ ⊢ 𝑃 : 𝐼 → 𝑂 satisfying the following conditions:

• Closure under input assignment: For any measures [∼ Y, input channel 𝑖 ∈ 𝐼 of type 𝜏 , and
value 𝑣 ∈ {0, 1}J𝜏K, we have [[read 𝑖 B val 𝑣] ∼ Y [read 𝑖 B val 𝑣].
• Closure under computation: For any measures [∼ Y, if [⇓ [′ and Y ⇓ Y′, then [′ ∼ Y′.
• Measure property: For any measures [∼ Y, we have Σ[= Σ Y.
• Valuation property: For any output channel 𝑜 ∈ 𝑂 , and any measures [∼ Y, there exists a
joint sum

[=
∑︁
𝑖

[𝑖 ∼
∑︁
𝑖

Y𝑖 = Y

such that

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:33

– the respective components [𝑖 ∼ Y𝑖 are again related, and

– the measures [𝑖 and Y 𝑗 have the same value 𝑣 , or lack thereof, on 𝑜 if and only if 𝑖 = 𝑗 .

Lemma B.11. We have the following:
• The identity relation is a protocol bisimulation.
• The inverse of a protocol bisimulation is a protocol bisimulation.
• The composition of two protocol bisimulations is a protocol bisimulation.

Definition B.12. Let ∼ be an arbitrary binary relation on measures on protocols Δ ⊢ 𝑃 : 𝐼 → 𝑂 .

The lifting ∼L is the closure of ∼ under joint linear combinations. Explicitly, ∼L is defined by∑︁
𝑖

𝑐𝑖 [𝑖 ∼L
∑︁
𝑖

𝑐𝑖 Y𝑖

for coefficients 𝑐𝑖 > 0 and measures [𝑖 ∼ Y𝑖 .

Lemma B.13. Let ∼ be a binary relation on measures on protocols Δ ⊢ 𝑃 : 𝐼 → 𝑂 with the following
properties:
• Closure under input assignment: For any measures [∼ Y, input channel 𝑖 ∈ 𝐼 of type 𝜏 , and
value 𝑣 ∈ {0, 1}J𝜏K, we have [[read 𝑖 B val 𝑣] ∼ Y [read 𝑖 B val 𝑣].
• Lifting closure under computation: For any measures [∼ Y, if [⇓ [′ and Y ⇓ Y′, then [′ ∼L Y′.
• Measure property: For any measures [∼ Y, we have Σ[= Σ Y.
• Valuation property: For any output channel 𝑜 ∈ 𝑂 , and any measures [∼ Y, there exists a joint
sum

[=
∑︁
𝑖

[𝑖 ∼
∑︁
𝑖

Y𝑖 = Y

such that
– the respective components [𝑖 ∼ Y𝑖 are again related, and
– the measures [𝑖 and Y 𝑗 have the same value 𝑣 , or lack thereof, on 𝑜 if and only if 𝑖 = 𝑗 .

Then the lifting ∼L is a protocol bisimulation.

We can now formally state what it means for exact protocol equality to be sound:

Definition B.14. An axiom Δ ⊢ 𝑃1 = 𝑃2 : 𝐼 → 𝑂 is sound if there is a protocol bisimulation ∼ such

that unit(𝑃1) ∼ unit(𝑃2).

The ambient IPDL theory for protocols is said to be sound if each of its axioms is sound. We now

show that this implies overall soundness for exact equality:

Lemma B.15 (Soundness of exact eqality of protocols). If the ambient IPDL theory for
protocols is sound, then for any equal protocols Δ ⊢ 𝑃1 = 𝑃2 : 𝐼 → 𝑂 , there exists a protocol bisimulation
∼ such that unit(𝑃1) ∼ unit(𝑃2).

Proof. We first replace the rules fold-if-left and fold-if-right by the equivalent formulation

in Figure 17. We now proceed by induction on this alternative set of rules for exact protocol

equality. We will freely use a measure in place of a reaction (rule cong-react) or a protocol (rules

embed, absorb-left) to indicate the obvious lifting of the corresponding construct to measures on

protocols.

• refl: Our desired bisimulation is the identity relation.

• sym: Our desired bisimulation is the inverse of the bisimulation obtained from the premise.

• trans: Our desired bisimulation is the composition of the two bisimulations obtained from

the two premises.

• axiom: The desired bisimulation exists by assumption.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:34 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

• embed: Let ∼ be the bisimulation obtained from the premise. Our desired bisimulation ∼𝜙 is

defined by

– 𝜙★([) ∼𝜙 𝜙★(Y) if [∼ Y
• input-unused: Our desired bisimulation is precisely the bisimulation obtained from the

premise, seen as a bisimulation on measures on protocols with the additional input 𝑖 .

• cong-react: Let ∼ be the reaction bisimulation obtained from the premise. Our desired

bisimulation is the lifting of the relation ∼react defined by

– (𝑜 B [) ∼react (𝑜 B [′) for measures [∼ [′
– unit(𝑜 B 𝑣) ∼react unit(𝑜 B 𝑣) for value 𝑣 ∈ {0, 1}J𝜏K
• cong-comp-left: Let ∼ be the bisimulation obtained from the premise. Our desired bisimula-

tion is the lifting of the relation ∼par defined by

– ([| | 𝑄) ∼par ([′ | | 𝑄) for [∼ [′ and protocol Δ ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2

• cong-new: Let ∼ be the bisimulation obtained from the premise. Our desired bisimulation

∼new is defined by

– (new 𝑜 : 𝜏 in [) ∼new (new 𝑜 : 𝜏 in [′) if [∼ [′
• comp-comm: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑃1 | | 𝑃2) ∼ unit(𝑃2 | | 𝑃1) for protocols Δ ⊢ 𝑃1 : 𝐼 ∪𝑂2 → 𝑂1 and Δ ⊢ 𝑃2 : 𝐼 ∪𝑂1 → 𝑂2

• comp-assoc: Our desired bisimulation is the lifting of the relation ∼ defined by

– 1

[
(𝑃1 | | 𝑃2) | | 𝑃3

]
∼ 1

[
𝑃1 | | (𝑃2 | | 𝑃3)

]
for

∗ protocol Δ ⊢ 𝑃1 : 𝐼 ∪𝑂2 ∪𝑂3 → 𝑂1

∗ protocol Δ ⊢ 𝑃2 : 𝐼 ∪𝑂1 ∪𝑂3 → 𝑂2

∗ protocol Δ ⊢ 𝑃3 : 𝐼 ∪𝑂1 ∪𝑂2 → 𝑂3

• new-exch: The desired bisimulation is the lifting of the relation ∼ defined by

– unit(new 𝑜1 : 𝜏1 in new 𝑜2 : 𝜏2 in 𝑃) ∼ unit(new 𝑜2 : 𝜏2 in new 𝑜1 : 𝜏1 in 𝑃) for
∗ protocol Δ, 𝑜1 : 𝜏1, 𝑜2 : 𝜏2 ⊢ 𝑃 : 𝐼 → 𝑂 ∪ {𝑜1, 𝑜2}

• comp-new: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑃 | | (new 𝑜 : 𝜏 in 𝑄)) ∼ unit(new 𝑜 : 𝜏 in (𝑃 | | 𝑄)) for
∗ protocol Δ ⊢ 𝑃 : 𝐼 ∪𝑂2 → 𝑂1

∗ protocol Δ, 𝑜 : 𝜏 ⊢ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2 ∪ {𝑜}
• absorb-left: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑃 | | 𝑄) ∼ unit(𝑃) for protocols Δ ⊢ 𝑃 : 𝐼 → 𝑂 and Δ ⊢ 𝑄 : 𝐼 ∪𝑂 → ∅
• diverge: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑜 B 𝑥 ← read 𝑜 ; 𝑅) ∼ unit(𝑜 B read 𝑜) for reaction Δ; · ⊢ 𝑅 : 𝐼 ∪ {𝑜} → 𝜏

• fold-if-left: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(new 𝑙 : 𝜏 in 𝑜 B 𝑥 ← read 𝑏; if 𝑥 then read 𝑙 else 𝑆2 | | 𝑙 B 𝑥 ← read 𝑏; 𝑆1) ∼
unit(𝑜 B 𝑥 ← read 𝑏; if 𝑥 then 𝑆1 else 𝑆2) for
∗ reaction Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏

∗ reaction Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

– unit(new 𝑙 : 𝜏 in 𝑜 B 𝑥 ← val 𝑣 ; if 𝑥 then read 𝑙 else 𝑆2 | | 𝑙 B 𝑥 ← val 𝑣 ; 𝑆1) ∼
unit(𝑜 B 𝑥 ← val 𝑣 ; if 𝑥 then 𝑆1 else 𝑆2) for
∗ value 𝑣 ∈ {0, 1}
∗ reaction Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏

∗ reaction Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

– unit(new 𝑙 : 𝜏 in 𝑜 B read 𝑙 | | 𝑙 B 𝑆1) ∼ unit(𝑜 B 𝑆1) for reaction Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏

– unit(new 𝑙 : 𝜏 in 𝑜 B 𝑆2 | | 𝑙 B 𝑆1) ∼ unit(𝑜 B 𝑆2) for
∗ reaction Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏

∗ reaction Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:35

– unit(new 𝑙 : 𝜏 in 𝑜 B 𝑣2 | | 𝑙 B 𝑆1) ∼ unit(𝑜 B 𝑣2) for
∗ reaction Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏

∗ value 𝑣2 ∈ {0, 1}J𝜏K
– unit(new 𝑙 : 𝜏 in 𝑜 B 𝑆2 | | 𝑙 B 𝑣1) ∼ unit(𝑜 B 𝑆2) for
∗ value 𝑣1 ∈ {0, 1}J𝜏K
∗ reaction Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

– unit(new 𝑙 : 𝜏 in 𝑜 B 𝑣2 | | 𝑙 B 𝑣1) ∼ unit(𝑜 B 𝑣2) for values 𝑣1, 𝑣2 ∈ {0, 1}J𝜏K
• fold-if-right: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(new 𝑟 : 𝜏 in 𝑜 B 𝑥 ← read 𝑏; if 𝑥 then 𝑆1 else read 𝑟 | | 𝑟 B 𝑥 ← read 𝑏; 𝑆2) ∼
unit(𝑜 B 𝑥 ← read 𝑏; if 𝑥 then 𝑆1 else 𝑆2) for
∗ reaction Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏

∗ reaction Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

– unit(new 𝑟 : 𝜏 in 𝑜 B 𝑥 ← val 𝑣 ; if 𝑥 then 𝑆1 else read 𝑟 | | 𝑟 B 𝑥 ← val 𝑣 ; 𝑆2) ∼
unit(𝑜 B 𝑥 ← val 𝑣 ; if 𝑥 then 𝑆1 else 𝑆2) for
∗ value 𝑣 ∈ {0, 1}
∗ reaction Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏

∗ reaction Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

– unit(new 𝑟 : 𝜏 in 𝑜 B read 𝑟 | | 𝑟 B 𝑆2) ∼ unit(𝑜 B 𝑆2) for reaction Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

– unit(new 𝑟 : 𝜏 in 𝑜 B 𝑆1 | | 𝑟 B 𝑆2) ∼ unit(𝑜 B 𝑆1) for
∗ reaction Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏

∗ reaction Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

– unit(new 𝑟 : 𝜏 in 𝑜 B 𝑣1 | | 𝑟 B 𝑆2) ∼ unit(𝑜 B 𝑣1) for
∗ value 𝑣1 ∈ {0, 1}J𝜏K
∗ reaction Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

– unit(new 𝑟 : 𝜏 in 𝑜 B 𝑆1 | | 𝑟 B 𝑣2) ∼ unit(𝑜 B 𝑆1) for
∗ reaction Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏

∗ value 𝑣2 ∈ {0, 1}J𝜏K
– unit(new 𝑟 : 𝜏 in 𝑜 B 𝑣1 | | 𝑟 B 𝑣2) ∼ unit(𝑜 B 𝑣1) for values 𝑣1, 𝑣2 ∈ {0, 1}J𝜏K
• fold-bind: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(new 𝑐 : 𝜏1 in 𝑜 B 𝑥 ← read 𝑐; 𝑅2 | | 𝑐 B 𝑅1) ∼ unit(𝑜 B 𝑥 ← 𝑅1; 𝑅2) for
∗ reaction Δ; · ⊢ 𝑅1 : 𝐼 ∪ {𝑜} → 𝜏1
∗ reaction Δ; 𝑥 : 𝜏1 ⊢ 𝑅2 : 𝐼 ∪ {𝑜} → 𝜏2

– unit(new 𝑐 : 𝜏1 in 𝑜 B 𝑅2 | | 𝑐 B 𝑣1) ∼ unit(𝑜 B 𝑅2) for
∗ value 𝑣1 ∈ {0, 1}J𝜏1K
∗ reaction Δ; · ⊢ 𝑅2 : 𝐼 ∪ {𝑜} → 𝜏2

– unit(new 𝑐 : 𝜏1 in 𝑜 B 𝑣2 | | 𝑐 B 𝑣1) ∼ unit(𝑜 B 𝑣2) for
∗ values 𝑣1 ∈ {0, 1}J𝜏1K and 𝑣2 ∈ {0, 1}J𝜏2K

• subsume: Our desired bisimulation is the lifting of the relation ∼ defined by

– unit(𝑜1 B 𝑥0 ← read 𝑜0; 𝑅1 | | 𝑜2 B 𝑥0 ← read 𝑜0; 𝑥1 ← read 𝑜1; 𝑅2) ∼
unit(𝑜1 B 𝑥0 ← read 𝑜0; 𝑅1 | | 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2) for
∗ reaction Δ; 𝑥0 : 𝜏0 ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1
∗ reaction Δ; 𝑥1 : 𝜏1 ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2

– unit(𝑜1 B 𝑥0 ← val 𝑣0; 𝑅1 | | 𝑜2 B 𝑥0 ← val 𝑣0; 𝑥1 ← read 𝑜1; 𝑅2) ∼
unit(𝑜1 B 𝑥0 ← val 𝑣0; 𝑅1 | | 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2) for
∗ value 𝑣0 ∈ {0, 1}J𝜏0K
∗ reaction Δ; 𝑥0 : 𝜏0 ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1
∗ reaction Δ; 𝑥1 : 𝜏1 ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2

– unit(𝑜1 B 𝑅1 | | 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2) ∼ unit(𝑜1 B 𝑅1 | | 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2) for

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:36 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

∗ reaction Δ; · ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1
∗ reaction Δ; 𝑥1 : 𝜏1 ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2

– unit(𝑜1 B 𝑣1 | | 𝑜2 B 𝑅2) ∼ unit(𝑜1 B 𝑣1 | | 𝑜2 B 𝑅2) for
∗ value 𝑣1 ∈ {0, 1}J𝜏1K
∗ reaction Δ; · ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2

– unit(𝑜1 B 𝑣1 | | 𝑜2 B 𝑣2) ∼ unit(𝑜1 B 𝑣1 | | 𝑜2 B 𝑣2) for values 𝑣1 ∈ {0, 1}J𝜏1K and

𝑣2 ∈ {0, 1}J𝜏2K
• subst: Let ∼ be the reaction bisimulation obtained from the premise. Our desired bisimulation

is the lifting of the relation ∼subst defined by

–
(
𝑜1 B [| | 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2

)
∼subst

(
𝑜1 B [| | 𝑜2 B 𝑥1 ← [; 𝑅2

)
for

∗ distribution [on reactions Δ; · ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1
∗ reaction Δ; · ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1 evaluating to the same distribution as [

∗ reaction Δ; 𝑥1 : 𝜏1 ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2
such that unit(𝑥1 ← 𝑅1; 𝑥

′
1
← 𝑅1; ret ((𝑥1, 𝑥 ′1))) ∼ unit(𝑥1 ← 𝑅1; ret ((𝑥1, 𝑥1)))

– unit(𝑜1 B 𝑣1 | | 𝑜2 B 𝑅2) ∼subst unit(𝑜1 B 𝑣1 | | 𝑜2 B 𝑅2) for
∗ value 𝑣1 ∈ {0, 1}J𝜏1K
∗ reaction Δ; · ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2

– unit(𝑜1 B 𝑣1 | | 𝑜2 B 𝑣2) ∼subst unit(𝑜1 B 𝑣1 | | 𝑜2 B 𝑣2) for values 𝑣1 ∈ {0, 1}J𝜏1K and
𝑣2 ∈ {0, 1}J𝜏2K

• drop: Let ∼ be the reaction bisimulation obtained from the premise. Our desired bisimulation

is the lifting of the relation ∼drop defined by

–
(
𝑜1 B [1 | | 𝑜2 B 𝑥1 ← read 𝑜1; 𝑅2

)
∼drop

(
𝑜1 B [1 | | 𝑜2 B [2

)
for

∗ measure [1 on reactions Δ; · ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1
∗ reaction Δ; · ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1 such that

i) 𝑅1 either evaluates to the same distribution as [1, or

ii) there exists a measure [1 on reactions Δ; · ⊢ 𝑅1 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏1 such that 𝑅1
evaluates to the same distribution as [1 + [1

∗ distribution [2 on reactions Δ; · ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2
∗ reaction Δ; · ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2 evaluating to the same distribution as [2
such that unit(𝑥1 ← 𝑅1; 𝑅2) ∼ unit(𝑅2)

– (𝑜1 B 𝑣1 | | 𝑜2 B 𝑅2) ∼drop (𝑜1 B 𝑣1 | | 𝑜2 B 𝑅2) for
∗ value 𝑣1 ∈ {0, 1}J𝜏1K
∗ reaction Δ; · ⊢ 𝑅2 : 𝐼 ∪ {𝑜1, 𝑜2} → 𝜏2

– (𝑜1 B 𝑣1 | | 𝑜2 B 𝑣2) ∼drop (𝑜1 B 𝑣1 | | 𝑜2 B 𝑣2) for values 𝑣1 ∈ {0, 1}J𝜏1K and 𝑣2 ∈ {0, 1}J𝜏2K

□

𝑜 ∉ 𝐼 𝑏 ∈ 𝐼 𝑏 : bool, 𝑜 : 𝜏 ∈ Δ Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏 Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

Δ ⊢
(
new 𝑙 : 𝜏 in 𝑜 B 𝑥 : bool← read 𝑏; if 𝑥 then read 𝑙 else 𝑆2 | | 𝑙 B 𝑥 : bool← read 𝑏; 𝑆1

)
=(

𝑜 B 𝑥 : bool← read 𝑏; if 𝑥 then 𝑆1 else 𝑆2
)
: 𝐼 → {𝑜}

𝑜 ∉ 𝐼 𝑏 ∈ 𝐼 𝑏 : bool, 𝑜 : 𝜏 ∈ Δ Δ; · ⊢ 𝑆1 : 𝐼 ∪ {𝑜} → 𝜏 Δ; · ⊢ 𝑆2 : 𝐼 ∪ {𝑜} → 𝜏

Δ ⊢
(
new 𝑟 : 𝜏 in 𝑜 B 𝑥 : bool← read 𝑏; if 𝑥 then 𝑆1 else read 𝑟 | | 𝑟 B 𝑥 : bool← read 𝑏; 𝑆2

)
=(

𝑜 B 𝑥 : bool← read 𝑏; if 𝑥 then 𝑆1 else 𝑆2
)
: 𝐼 → {𝑜}

Fig. 17. Alternative formulation of the rules fold-if-left(top) and fold-if-right(bottom).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:37

Δ ⊢ 𝑃1 ≈𝑘𝑙 𝑃2 : 𝐼 → 𝑂

Δ ⊢ 𝑃 = 𝑄 : 𝐼 → 𝑂

Δ ⊢ 𝑃 ≈0
0
𝑄 : 𝐼 → 𝑂

strict

Δ ⊢ 𝑃1 ≈𝑘𝑙 𝑃2 : 𝐼 → 𝑂

Δ ⊢ 𝑃2 ≈𝑘𝑙 𝑃1 : 𝐼 → 𝑂
sym

Δ ⊢ 𝑃1 ≈𝑘1𝑙1 𝑃2 : 𝐼 → 𝑂 Δ ⊢ 𝑃2 ≈𝑘2𝑙2 𝑃3 : 𝐼 → 𝑂

Δ ⊢ 𝑃1 ≈𝑘1+𝑘2
max(𝑙1,𝑙2) 𝑃3 : 𝐼 → 𝑂

trans

Δ ⊢ 𝑃 ≈ 𝑄 : 𝐼 → 𝑂 axiom

Δ ⊢ 𝑃 ≈1
0
𝑄 : 𝐼 → 𝑂

axiom

𝑖 ∉ 𝐼 ∪𝑂 Δ ⊢ 𝑃 ≈𝑘
𝑙
𝑄 : 𝐼 → 𝑂

Δ ⊢ 𝑃 ≈𝑘
𝑙
𝑄 : 𝐼 ∪ {𝑖} → 𝑂

input-unused

Δ ⊢ 𝑃 ≈𝑘1
𝑙1
𝑄 : 𝐼 → 𝑂 𝑘1 ≤ 𝑘2 𝑙1 ≤ 𝑙2
Δ ⊢ 𝑃 ≈𝑘2

𝑙2
𝑄 : 𝐼 → 𝑂

subsume

\ : Δ1 → Δ2 Δ1 ⊢ 𝑃 ≈𝑘𝑙 𝑄 : 𝐼 → 𝑂

Δ2 ⊢ \★(𝑃) ≈𝑘𝑙 \
★(𝑄) : \★(𝐼) → \★(𝑂)

embed

Δ ⊢ 𝑃 ≈𝑘
𝑙
𝑃 ′ : 𝐼 ∪𝑂2 → 𝑂1 Δ ⊢Σ 𝑄 : 𝐼 ∪𝑂1 → 𝑂2

Δ ⊢ 𝑃 | | 𝑄 ≈𝑘
𝑙+|𝑄 | 𝑃

′ | | 𝑄 : 𝐼 → 𝑂1 ∪𝑂2

cong-comp-left

Δ, 𝑜 : 𝐴 ⊢ 𝑃 ≈𝑘
𝑙
𝑃 ′ : 𝐼 → 𝑂 ∪ {𝑜}

Δ ⊢ (new 𝑜 : 𝐴 in 𝑃) ≈𝑘
𝑙
(new 𝑜 : 𝐴 in 𝑃 ′) : 𝐼 → 𝑂

cong-new

Fig. 18. Approximate equivalence for IPDL protocols.

B.2 Soundness for Approximate Fragment
Recall that the equational theory for the approximate fragment is composed of two judgments:

⊢ {Δ_ ⊢ 𝑃_ ≈_ 𝑄_ : 𝐼_ → 𝑂_}, for top-level approximate equality against polynomial time

adversaries, and Δ ⊢ 𝑃1 ≈(𝑘,𝑙)_
𝑃2 : 𝐼 → 𝑂 , for soundness against a specific security parameter _.

We begin with the latter.

C APPROXIMATE EQUIVALENCE
For approximate equivalence of IPDL protocols, we assume a finite set T≈ of ambient approximate
axioms of the form Δ ⊢ 𝑃 ≈ 𝑄 : 𝐼 → 𝑂 . An approximate equivalence of protocols takes the form

of a judgement Δ ⊢ 𝑃 ≈𝑘
𝑙
𝑄 : 𝐼 → 𝑂 , where 𝑘, 𝑙 are natural numbers. When we need to make the

theory T≈ explicit, we write the judgement as T≈ ⇒ Δ ⊢ 𝑃 ≈𝑘
𝑙
𝑄 : 𝐼 → 𝑂 .

Definition C.1 (Errors). An error Y is a function N→ N→ [0, 1]that is monotonically increasing

in both arguments. Given a signature Σ, an interpretation I, and two protocols Δ ⊢ 𝑃 : 𝐼 → 𝑂 and

Δ ⊢ 𝑄 : 𝐼 → 𝑂 with identical typing judgements, we write I ⇒ Δ ⊨ 𝑃 ≈Y 𝑄 : 𝐼 → 𝑂 to mean that

for any two natural numbers 𝑝, 𝑞 ∈ N, any program context 𝐶 : (Δ ⊢ 𝐼 → 𝑂) → (Δ′ ⊢ 𝐼 ′ → 𝑂 ′)
bounded by 𝑝 , and any distinguisher A for Δ′ ⊢ 𝐼 ′ → 𝑂 ′ bounded by 𝑞, we have��

Pr[A(𝐶 (𝑃))I] − Pr[A(𝐶 (𝑄))I]
�� ≤ Y (𝑝, 𝑞)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

30:38 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

{Δ1

_
⊢ 𝑃1

_
≈ 𝑄1

_
: 𝐼 1
_
→ 𝑂1

_
}_∈N}, . . . , {Δ𝑛_ ⊢ 𝑃

𝑛
_
≈ 𝑄𝑛

_
: 𝐼𝑛
_
→ 𝑂𝑛

_
}_∈N ⇒ {Δ_ ⊢ 𝑃_ ≈ 𝑄_ : 𝐼_ → 𝑂_}_∈N}

∀_,Δ1

_
⊢ 𝑃1

_
≈ 𝑄1

_
: 𝐼 1
_
→ 𝑂1

_
, . . . ,Δ𝑛

_
⊢ 𝑃𝑛

_
≈ 𝑄𝑛

_
: 𝐼𝑛
_
→ 𝑂𝑛

_
⇒ Δ_ ⊢ 𝑃_ ≈𝑘_𝑙_ 𝑄_ : 𝐼_ → 𝑂_

|𝐼_ | = O(poly(_)) |𝑂_ | = O(poly(_)) 𝑘_ = O(poly(_)) 𝑙_ = O(poly(_))
{Δ1

_
⊢ 𝑃1

_
≈ 𝑄1

_
: 𝐼 1
_
→ 𝑂1

_
}_∈N, . . . , {Δ𝑛_ ⊢ 𝑃

𝑛
_
≈ 𝑄𝑛

_
: 𝐼𝑛
_
→ 𝑂𝑛

_
}_∈N ⇒ {Δ_ ⊢ 𝑃_ ≈ 𝑄_ : 𝐼_ → 𝑂_}_∈N

Fig. 19. Asymptotic approximate equivalence for IPDL protocol families.

Lemma C.2 (Soundness of approximate eqivalence of protocols). Fix a signature Σ, an
interpretation I, an ambient approximate theory Δ1 ⊢ 𝑃1 ≈ 𝑄1 : 𝐼1 → 𝑂1, . . . ,Δ𝑛 ⊢ 𝑃𝑛 ≈ 𝑄𝑛 : 𝐼𝑛 →
𝑂𝑛 , an error family Y1, . . . , Y𝑛 such that I ⇒ Δ𝑖 ⊨ 𝑃𝑖 ≈Y𝑖 𝑄𝑖 : 𝐼𝑖 → 𝑂𝑖 , and two families of protocols
{Δ_ ⊢ 𝑃_ : 𝐼_ → 𝑂_}_∈N and {Δ_ ⊢ 𝑄_ : 𝐼_ → 𝑂_}_∈N with identical typing judgments. Then
Δ ⊢ 𝑃 ≈𝑘

𝑙
𝑄 : 𝐼 → 𝑂 implies Δ ⊨ 𝑃 =Y𝑘

𝑙
𝑄 : 𝐼 → 𝑂 , where

Y𝑘
𝑙
(𝑝, 𝑞) B 𝑘 max

(
Y1 (𝑝 + 𝑙, 𝑞), . . . , Y𝑛 (𝑝 + 𝑙, 𝑞)

)
For asymptotic approximate equivalence of IPDL protocols, we assume a finite set T

O(·)
≈ of

ambient approximate axiom families of the form {Δ_ ⊢ 𝑃_ ≈ 𝑄_ : 𝐼_ → 𝑂_}_∈N. The asymptotic

equivalence of protocol families takes the form of the judgement T
O(·)
≈ ⇒ {Δ_ ⊢ 𝑃_ ≈ 𝑄_ : 𝐼_ →

𝑂_}_∈N. When we need to make the underlying exact theory T explicit, we write the judgement as

T; T
O(·)
≈ ⇒ {Δ_ ⊢ 𝑃_ ≈ 𝑄_ : 𝐼_ → 𝑂_}_∈N.

Definition C.3 (Computational Indistinguishability). Fix a signature Σ, a PPT family of interpreta-

tions {I_}_∈N, and two families of protocols {Δ_ ⊢ 𝑃_ : 𝐼_ → 𝑂_}_∈N and {Δ_ ⊢ 𝑄_ : 𝐼_ → 𝑂_}_∈N
with identical typing judgments. Then we say that {𝑃_} and {𝑄_} are indistinguishable under {I_},
written {I_}_∈N ⇒ {Δ_ ⊨ 𝑃_ ≈ 𝑄_ : 𝐼_ → 𝑂_}_∈N, if |𝐼_ | = O(poly(_)) = |𝑂_ |, and for any two

polynomials 𝑝 (_) and 𝑞(_) there exists a negligible function Y (_) such that for any _ ∈ N, any

program context 𝐶 : (Δ_ ⊢ 𝐼_ → 𝑂_) → (Δ′_ ⊢ 𝐼
′
_
→ 𝑂 ′

_
) bounded by 𝑝 (_), and any distinguisher

A for Δ′
_
⊢ 𝐼_ → 𝑂_ bounded by 𝑞(_), we have��

Pr[A(𝐶 (𝑃_))I_] − Pr[A(𝐶 (𝑄_))I_]
�� ≤ Y (_)

Definition C.4. Fix a signature Σ and a PPT family of interpretations {I_}_∈N. An asymptotic

approximate theory {Δ1

_
⊢ 𝑃1

_
≈ 𝑄1

_
: 𝐼 1
_
→ 𝑂1

_
}_∈N}, . . . , {Δ𝑛_ ⊢ 𝑃

𝑛
_
≈ 𝑄𝑛

_
: 𝐼𝑛
_
→ 𝑂𝑛

_
}_∈N is sound

under {I_}, written {I_}_∈N ⊨ {Δ1

_
⊢ 𝑃1

_
≈ 𝑄1

_
: 𝐼 1
_
→ 𝑂1

_
}_∈N}, . . . , {Δ𝑛_ ⊢ 𝑃

𝑛
_
≈ 𝑄𝑛

_
: 𝐼𝑛
_
→ 𝑂𝑛

_
}_∈N,

if {I_}_∈N ⇒ {Δ𝑖_ ⊨ 𝑃
𝑖
_
≈ 𝑄𝑖

_
: 𝐼 𝑖
_
→ 𝑂𝑖

_
}_∈N.

Theorem C.5 (Soundness of asymptotic approximate eqivalence of protocols). Fix a
signature Σ, a PPT family of interpretations {I_}_∈N, an ambient exact theory T such that I_ ⊨ T for
each _ ∈ N, an asymptotic approximate theory TO(·)≈ such that {I_}_∈N ⊨ TO(·)≈ , and two families of
protocols {Δ_ ⊢ 𝑃_ : 𝐼_ → 𝑂_}_∈N and {Δ_ ⊢ 𝑄_ : 𝐼_ → 𝑂_}_∈N with identical typing judgments
such that |𝐼_ | and |𝑂_ | are polynomial in _. Then T; TO(·)≈ ⇒ {Δ_ ⊢ 𝑃_ ≈ 𝑄_ : 𝐼_ → 𝑂_}_∈N implies
{I_}_∈N ⇒ {Δ_ ⊨ 𝑃_ ≈ 𝑄_ : 𝐼_ → 𝑂_}_∈N.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

A Core Calculus for Equational Proofs of Cryptographic Protocols 30:39

REFERENCES
Martin Abadi and Phillip Rogaway. 2002. Reconciling two views of cryptography (the computational soundness of formal

encryption). Journal of cryptology 15, 2 (2002), 103–127.

Michael Backes, Ankit Malik, and Dominique Unruh. 2012. Computational Soundness without Protocol Restrictions. In

Proceedings of the 2012 ACM Conference on Computer and Communications Security (Raleigh, North Carolina, USA) (CCS
’12). Association for Computing Machinery, New York, NY, USA, 699–711. https://doi.org/10.1145/2382196.2382270

Michael Backes, Birgit Pfitzmann, and Michael Waidner. 2007. The reactive simulatability (RSIM) framework for asynchro-

nous systems. Information and Computation 205, 12 (2007), 1685–1720. https://doi.org/10.1016/j.ic.2007.05.002

David Baelde, Stéphanie Delaune, Charlie Jacomme, Adrien Koutsos, and Solène Moreau. 2021. An Interactive Prover

for Protocol Verification in the Computational Model. In SP 2021 - 42nd IEEE Symposium on Security and Privacy. San
Fransisco / Virtual, United States. https://hal.archives-ouvertes.fr/hal-03172119

Gergei Bana and Hubert Comon-Lundh. 2014. A Computationally Complete Symbolic Attacker for Equivalence Properties.

Proceedings of the ACM Conference on Computer and Communications Security (11 2014). https://doi.org/10.1145/2660267.

2660276

M. Barbosa, G. Barthe, K. Bhargavan, B. Blanchet, C. Cremers, K. Liao, and B. Parno. 2021a. SoK: Computer-Aided

Cryptography. In 2021 2021 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA,

USA, 777–795. https://doi.org/10.1109/SP40001.2021.00008

Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, and Pierre-Yves Strub. 2021b. Mechanized Proofs of

Adversarial Complexity and Application to Universal Composability. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security (Virtual Event, Republic of Korea) (CCS ’21). Association for Computing

Machinery, New York, NY, USA, 2541–2563. https://doi.org/10.1145/3460120.3484548

G. Barthe, B. Grégoire, S. Heraud, and Santiago Zanella Béguelin. 2011. Computer-Aided Security Proofs for the Working

Cryptographer. In CRYPTO.
Gilles Barthe, Benjamin Grégoire, and Benedikt Schmidt. 2015. Automated proofs of pairing-based cryptography. In

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. 1156–1168.
Donald Beaver. 1995. Precomputing oblivious transfer. In Annual International Cryptology Conference. Springer, 97–109.
Karthikeyan Bhargavan, Abhishek Bichhawat, Quoc Huy Do, Pedram Hosseyni, Ralf Küsters, Guido Schmitz, and Tim

Würtele. 2021. DY* : A Modular Symbolic Verification Framework for Executable Cryptographic Protocol Code. In

EuroS&P 2021 - 6th IEEE European Symposium on Security and Privacy. Virtual, Austria. https://hal.inria.fr/hal-03178425

Bruno Blanchet. 2006. A Computationally Sound Mechanized Prover for Security Protocols. 140–154. https://doi.org/10.

1109/SP.2006.1

Bruno Blanchet. 2013. Automatic verification of security protocols in the symbolic model: The verifier proverif. In

Foundations of security analysis and design VII. Springer, 54–87.
Manuel Blum. 1983. Coin flipping by telephone a protocol for solving impossible problems. ACM SIGACT News 15, 1 (1983),

23–27.

David Butler, David Aspinall, and Adrià Gascón. 2020. Formalising Oblivious Transfer in the Semi-Honest and Malicious

Model in CryptHOL. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs
(New Orleans, LA, USA) (CPP 2020). Association for Computing Machinery, New York, NY, USA, 229–243. https:

//doi.org/10.1145/3372885.3373815

Ran Canetti. 2000. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptology ePrint

Archive, Report 2000/067. https://ia.cr/2000/067.

Ran Canetti, Alley Stoughton, and Mayank Varia. 2019. EasyUC: Using EasyCrypt to Mechanize Proofs of Universally

Composable Security. In 32nd IEEE Computer Security Foundations Symposium. https://eprint.iacr.org/2019/582.

Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In OsDI, Vol. 99. 173–186.
Veronique Cortier and Bogdan Warinschi. 2011. A Composable Computational Soundness Notion. In Proceedings of the 18th

ACM Conference on Computer and Communications Security (Chicago, Illinois, USA) (CCS ’11). Association for Computing

Machinery, New York, NY, USA, 63–74. https://doi.org/10.1145/2046707.2046717

Cas J. F. Cremers. 2008. The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols. In Computer Aided
Verification, Aarti Gupta and Sharad Malik (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 414–418.

Karim M. El Defrawy and Vitor Pereira. 2019. A High-Assurance Evaluator for Machine-Checked Secure Multiparty

Computation. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (2019).

Danny Dolev and Andrew Yao. 1983. On the security of public key protocols. IEEE Transactions on information theory 29, 2

(1983), 198–208.

Denis Firsov and Dominique Unruh. 2022. Reflection, Rewinding, and Coin-Toss in EasyCrypt. In Proceedings of the 11th
ACM SIGPLAN International Conference on Certified Programs and Proofs (Philadelphia, PA, USA) (CPP 2022). Association
for Computing Machinery, New York, NY, USA, 166–179. https://doi.org/10.1145/3497775.3503693

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

https://doi.org/10.1145/2382196.2382270
https://doi.org/10.1016/j.ic.2007.05.002
https://hal.archives-ouvertes.fr/hal-03172119
https://doi.org/10.1145/2660267.2660276
https://doi.org/10.1145/2660267.2660276
https://doi.org/10.1109/SP40001.2021.00008
https://doi.org/10.1145/3460120.3484548
https://hal.inria.fr/hal-03178425
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1145/3372885.3373815
https://doi.org/10.1145/3372885.3373815
https://ia.cr/2000/067
https://eprint.iacr.org/2019/582
https://doi.org/10.1145/2046707.2046717
https://doi.org/10.1145/3497775.3503693

30:40 Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett

Joshua Gancher, Kristina Sojakova, Xiong Fan, Elaine Shi, and Greg Morrisett. 2022. A Core Calculus for Equational Proofs

of Distributed Cryptographic Protocols: Supplemental Material. https://github.com/ipdl/ipdl.

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental game. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing. ACM, 218–229.

Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: Higher-Order Typed Functional Choreographies. Proc. ACM Program.
Lang. 6, POPL, Article 23 (jan 2022), 27 pages. https://doi.org/10.1145/3498684

Kevin Liao, Matthew A. Hammer, and Andrew Miller. 2019. ILC: A Calculus for Composable, Computational Cryptography.

In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ,

USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 640–654. https://doi.org/10.1145/3314221.

3314607

Yehuda Lindell. 2020. Secure Multiparty Computation. Commun. ACM 64, 1 (dec 2020), 86–96. https://doi.org/10.1145/

3387108

Andreas Lochbihler and S. Reza Sefidgar. 2018. A tutorial introduction to CryptHOL. Cryptology ePrint Archive, Report

2018/941. https://ia.cr/2018/941.

Andreas Lochbihler, S. Reza Sefidgar, David Basin, and Ueli Maurer. 2019. Formalizing Constructive Cryptography us-

ing CryptHOL. In 32nd IEEE Computer Security Foundations Symposium. http://www.andreas-lochbihler.de/pub/

lochbihler2019csf.pdf.

Gavin Lowe. 1996. Breaking and fixing the Needham-Schroeder Public-Key Protocol using FDR. In Tools and Algorithms
for the Construction and Analysis of Systems, Tiziana Margaria and Bernhard Steffen (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 147–166.

Assia Mahboubi and Enrico Tassi. 2021. Mathematical Components. Zenodo. https://doi.org/10.5281/zenodo.4457887

Ueli Maurer. 2012. Constructive Cryptography – A New Paradigm for Security Definitions and Proofs. In Theory of Security
and Applications, Sebastian Mödersheim and Catuscia Palamidessi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

33–56.

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The TAMARIN Prover for the Symbolic Analysis

of Security Protocols. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 696–701.

Robin Milner, Joachim Parrow, and David Walker. 1992. A calculus of mobile processes, I. Information and Computation 100,

1 (1992), 1–40. https://doi.org/10.1016/0890-5401(92)90008-4

Moni Naor and Benny Pinkas. 1999. Oblivious transfer and polynomial evaluation. In Proceedings of the thirty-first annual
ACM symposium on Theory of computing. 245–254.

Adam Petcher and Greg Morrisett. 2015. The Foundational Cryptography Framework. In Principles of Security and Trust,
Riccardo Focardi and Andrew Myers (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 53–72.

S. Schneider. 1996. Security properties and CSP. In Proceedings 1996 IEEE Symposium on Security and Privacy. 174–187.
https://doi.org/10.1109/SECPRI.1996.502680

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 30. Publication date: January 2023.

https://github.com/ipdl/ipdl
https://doi.org/10.1145/3498684
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1145/3387108
https://doi.org/10.1145/3387108
https://ia.cr/2018/941
http://www.andreas-lochbihler.de/pub/lochbihler2019csf.pdf
http://www.andreas-lochbihler.de/pub/lochbihler2019csf.pdf
https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1109/SECPRI.1996.502680

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Overview of IPDL
	3.1 Background on Simulation-Based Security
	3.2 Key Ideas of IPDL
	3.3 Example: Secure Message Communication

	4 Core Language and Logic
	4.1 Core Syntax
	4.2 Semantics
	4.3 Equational Logic
	4.4 Soundness

	5 IPDL Case Studies
	5.1 Coq Mechanization
	5.2 Communication Protocols
	5.3 OT Protocols
	5.4 Two-Party GMW Protocol
	5.5 Multi-Party Coin Flip Protocol
	5.6 Proof Effort

	6 Conclusion and Future Work
	A Additional Figures
	B Soundness for IPDL
	B.1 Soundness for Exact Fragment
	B.2 Soundness for Approximate Fragment

	C Approximate Equivalence
	References

