4 research outputs found

    Cellulose Nanofibrils and Diblock Copolymer Complex: Micelle Formation and Enhanced Dispersibility

    No full text
    A great challenge to the utilization of bioderived cellulose nanofibrils (CNFs) is related to dispersion, where the hydrophilic nature makes them difficult to disperse in both organic solvents and hydrophobic polymers. In this study, an amphiphilic diblock copolymer, poly­(methyl methacrylate-<i>b</i>-acrylic acid) (PMMA-<i>b</i>-PAA), which contains a short interactive block of PAA and a long hydrophobic block of PMMA, was utilized to modify the surface of CNFs covered with carboxylic acid groups (CNF-COOH). The PAA block binds to the surface carboxylic acid groups on the CNFs through the formation of multiple hydrogen bonds, while the hydrophobic PMMA block enables better dispersion of the CNFs as well as interfacial adhesion with the matrix polymer. The attachment of PMMA-<i>b</i>-PAA to the CNFs was confirmed through Fourier transform infrared spectroscopy. Micelles were observed to form from a dispersion of CNF-COOH/PMMA-<i>b</i>-PAA complex in H<sub>2</sub>O. Good dispersion with individualized nanofibrils has been achieved in dimethylformamide, dimethyl sulfoxide, ethanol, and methanol even when a low amount of block copolymer was functionalized on the CNF surface. The dispersion level of CNF-COOH/PMMA-<i>b</i>-PAA correlates well with the dielectric constant of the solvents, where solvents with high dielectric constants are better able to disperse the PMMA-<i>b</i>-PAA modified nanofibrils

    Polydopamine and Polydopamine–Silane Hybrid Surface Treatments in Structural Adhesive Applications

    No full text
    Numerous studies have focused on the remarkable adhesive properties of polydopamine, which can bind to substrates with a wide range of surface energies, even under aqueous conditions. This behavior suggests that polydopamine may be an attractive option as a surface treatment in structural bonding applications, where good bond durability is required. Here, we assessed polydopamine as a surface treatment for bonding aluminum plates with an epoxy resin. A model epoxy adhesive consisting of diglycidyl ether of bisphenol A (DGEBA) and Jeffamine D230 polyetheramine was employed, and lap shear measurements (ASTM D1002 10) were made (i) under dry conditions to examine initial bond strength and (ii) after exposure to hot/wet (63 °C in water for 14 days) conditions to assess bond durability. Surprisingly, our results showed that polydopamine alone as a surface treatment provided no benefit beyond that obtained by exposing the substrates to an alkaline solution of tris buffer used for the deposition of polydopamine. This implies that polydopamine has a potential Achilles’ heel, namely, the formation of a weak boundary layer that was identified using X-ray photoelectron spectroscopy (XPS) of the fractured surfaces. In fact, for longer deposition times (2.5 and 18 h), the tris buffer-treated surface outperformed the polydopamine surface treatments, suggesting that tris buffer plays a unique role in improving adhesive performance even in the absence of polydopamine. We further showed that the use of polydopamine–3-aminopropyltriethoxysilane (APTES) hybrid surface treatments provided significant improvements in bond durability at extended deposition times relative to both polydopamine and an untreated control

    Synthesis and Characterization of Aminopropyltriethoxysilane-Polydopamine Coatings

    No full text
    Polydopamine coatings are of interest due to the fact that they can promote adhesion to a broad range of materials and can enable a variety of applications. However, the polydopamine–substrate interaction is often noncovalent. To broaden the potential applications of polydopamine, we show the incorporation of 3-aminopropyltriethoxysilane (APTES), a traditional coupling agent capable of covalent bonding to a broad range of organic and inorganic surfaces, into polydopamine coatings. High energy X-ray photoelectron spectroscopy (HE-XPS), conventional XPS, near-edge X-ray absorption fine structure (NEXAFS), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), and ellipsometry measurements were used to investigate changes in coating chemistry and thickness, which suggest covalent incorporation of APTES into polydopamine. These coatings can be deposited either in Tris buffer or by using an aqueous APTES solution as a buffer without Tris. APTES–dopamine hydrochloride deposition from solutions with molar ratios between 0:1 and 10:1 allowed us to control the coating composition across a broad range

    Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils

    No full text
    Cellulose nanofibrils (CNFs) are a class of cellulosic nanomaterials with high aspect ratios that can be extracted from various natural sources. Their highly crystalline structures provide the nanofibrils with excellent mechanical and thermal properties. The main challenges of CNFs in nanocomposite applications are associated with their high hydrophilicity, which makes CNFs incompatible with hydrophobic polymers. In this study, highly transparent and toughened poly­(methyl methacrylate) (PMMA) nanocomposite films were prepared using various percentages of CNFs covered with surface carboxylic acid groups (CNF-COOH). The surface groups make the CNFs interfacial interaction with PMMA favorable, which facilitate the homogeneous dispersion of the hydrophilic nanofibrils in the hydrophobic polymer and the formation of a percolated network of nanofibrils. The controlled dispersion results in high transparency of the nanocomposites. Mechanical analysis of the resulting films demonstrated that a low percentage loading of CNF-COOH worked as effective reinforcing agents, yielding more ductile and therefore tougher films than the neat PMMA film. Toughening mechanisms were investigated through coarse-grained simulations, where the results demonstrated that a favorable polymer-nanofibril interface together with percolation of the nanofibrils, both facilitated through hydrogen bonding interactions, contributed to the toughness improvement in these nanocomposites
    corecore