33 research outputs found
HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors
RNA and DNA aptamers specific for HIV-1 reverse transcriptase (RT) can inhibit reverse transcription in vitro. RNA aptamers have been shown to potently block HIV-1 replication in culture. We previously reported mutants of HIV-1 RT with substitutions N255D or N265D that display resistance to the DNA aptamer RT1t49. Variant viruses bearing these mutations singly or in combination were compromised for replication. In order to address the wider applicability of such aptamers, HIV-1 RT variants containing the N255D, N265D or both (Dbl) were tested for the extent of their cross-resistance to other DNA/RNA aptamers as well as to other RT inhibitors. Both N265D and Dbl RTs were resistant to most aptamers tested. N255D mutant displayed mild resistance to two of the DNA aptamers, little change in sensitivity to three and hypersensitivity to one. Although all mutants displayed wild type-like ribonuclease H activity, their activity was compromised under conditions that prevent re-binding. This suggests that the processivity defect caused by these mutations can also affect RNase H function thus contributing further to the replication defect in mutant viruses. These results indicate that mutants conferring resistance to anti-RT aptamers significantly affect many HIV-1 RT enzymatic activities, which could contribute to preventing the development of resistance in vivo. If such mutations were to arise in vivo, our results suggest that variant viruses should remain susceptible to many existing anti-RT inhibitors. This result was tempered by the observation that NRTI-resistance mutations such as K65R can confer resistance to some anti-RT aptamers
Instability of retroviral vectors with HIV-1-specific RT aptamers due to cryptic splice sites in the U6 promoter
<p>Abstract</p> <p>Background</p> <p>Internal polymerase III promoters in retroviral vectors have been used extensively to express short RNA sequences, such as ribozymes, RNA aptamers or short interfering RNA inhibitors, in various positions and orientations. However, the stability of these promoters in the reverse orientation has not been rigorously evaluated.</p> <p>Results</p> <p>A series of retroviral vectors was generated carrying the U6+1 promoter with 3 different HIV-1 RT-specific RNA aptamers and one control aptamer, all in the reverse orientation. After shuttle packaging, the CD4<sup>+ </sup>cell line CEMx174 was transduced with each vector, selected for expression of GFP, and challenged with HIV-1. We did not observe inhibition of HIV-1 replication in these transduced populations. PCR amplification of the U6+1 promoter-RNA aptamer inhibitor cassette from transduced CEMx174 cells and RT-PCR amplification from transfected Phoenix (amphotropic) packaging cells showed two distinct products: a full-length product of the expected size as well as a truncated product. The sequence of the full-length PCR product was identical to the predicted amplicon sequence. However, sequencing of the truncated product revealed a 139 bp deletion in the U6 promoter. This deletion decreased transcriptional activity of the U6 promoter. Analysis of the deleted sequences from the U6 promoter in the antisense direction indicated consensus splice donor, splice acceptor and branch point sequences.</p> <p>Conclusion</p> <p>The existence of a cryptic splice site in the U6 promoter when expressed in a retroviral vector in the reverse orientation generates deletions during packaging and may limit the utility of this promoter for expression of small RNA inhibitors.</p
Potent Activity of the HIV-1 Maturation Inhibitor Bevirimat in SCID-hu Thy/Liv Mice
The HIV-1 maturation inhibitor, 3-O-(3',3'-dimethylsuccinyl) betulinic acid (bevirimat, PA-457) is a promising drug candidate with 10 nM in vitro antiviral activity against multiple wild-type (WT) and drug-resistant HIV-1 isolates. Bevirimat has a novel mechanism of action, specifically inhibiting cleavage of spacer peptide 1 (SP1) from the C-terminus of capsid which results in defective core condensation.Oral administration of bevirimat to HIV-1-infected SCID-hu Thy/Liv mice reduced viral RNA by >2 log(10) and protected immature and mature T cells from virus-mediated depletion. This activity was observed at plasma concentrations that are achievable in humans after oral dosing, and bevirimat was active up to 3 days after inoculation with both WT HIV-1 and an AZT-resistant HIV-1 clinical isolate. Consistent with its mechanism of action, bevirimat caused a dose-dependent inhibition of capsid-SP1 cleavage in HIV-1-infected human thymocytes obtained from these mice. HIV-1 NL4-3 with an alanine-to-valine substitution at the N-terminus of SP1 (SP1/A1V), which is resistant to bevirimat in vitro, was also resistant to bevirimat treatment in the mice, and SP1/AIV had replication and thymocyte kinetics similar to that of WT NL4-3 with no evidence of fitness impairment in in vivo competition assays. Interestingly, protease inhibitor-resistant HIV-1 with impaired capsid-SP1 cleavage was hypersensitive to bevirimat in vitro with a 50% inhibitory concentration 140 times lower than for WT HIV-1.These results support further clinical development of this first-in-class maturation inhibitor and confirm the usefulness of the SCID-hu Thy/Liv model for evaluation of in vivo antiretroviral efficacy, drug resistance, and viral fitness
Potent Inhibition of Human Immunodeficiency Virus Type 1 Replication by Template Analog Reverse Transcriptase Inhibitors Derived by SELEX (Systematic Evolution of Ligands by Exponential Enrichment)
RNA aptamers derived by SELEX (systematic evolution of ligands by exponential enrichment) and specific for human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bind at the template-primer cleft with high affinity and inhibit its activity. In order to determine the potential of such template analog RT inhibitors (TRTIs) to inhibit HIV-1 replication, 10 aptamers were expressed with flanking, self-cleaving ribozymes to generate aptamer RNA transcripts with minimal flanking sequences. From these, six aptamers (70.8,13, 70.15, 80.55,65, 70.28, 70.28t34, and 1.1) were selected based on binding constants (K(d)) and the degree of inhibition of RT in vitro (50% inhibitory concentration [IC(50)]). These six aptamers were each stably expressed in 293T cells followed by transfection of a molecular clone of HIV(R3B). Analysis of the virion particles revealed that the aptamers were encapsidated into the virions released and that the packaging of the viral genomic RNA or the cognate primer, tRNA3Lys, was apparently unaffected. Infectivity of virions produced from 293T cell lines expressing the aptamers, as measured by infecting LuSIV reporter cells, was reduced by 90 to 99.5% compared to virions released from cells not expressing any aptamers. PCR analysis of newly made viral DNA upon infection with virions containing any of the three aptamers with the strongest binding affinities (70.8,13, 70.15, and 80.55,65) showed that all three were able to form the minus-strand strong-stop DNA. However, virions with the aptamers 70.8 and 70.15 were defective for first-strand transfer, suggesting an early block in viral reverse transcription. Jurkat T cells expressing each of the three aptamers, when infected with HIV(R3B), completely blocked the spread of HIV in culture. We found that the replication of nucleoside analog RT inhibitor-, nonnucleoside analog RT inhibitor-, and protease inhibitor-resistant viruses was strongly suppressed by the three aptamers. In addition, some of the HIV subtypes were severely inhibited (subtypes A, B, D, E, and F), while others were either moderately inhibited (subtypes C and O) or were naturally resistant to inhibition (chimeric A/D subtype). As virion-encapsidated TRTIs can predispose virions for inhibition immediately upon entry, they should prove to be efficacious agents in gene therapy approaches for AIDS
Mutations That Confer Resistance to Template-Analog Inhibitors of Human Immunodeficiency Virus (HIV) Type 1 Reverse Transcriptase Lead to Severe Defects in HIV Replication
We isolated two template analog reverse transcriptase (RT) inhibitor-resistant mutants of human immunodeficiency virus (HIV) type 1 RT by using the DNA aptamer, RT1t49. The mutations associated, N255D or N265D, displayed low-level resistance to RT1t49, while high-level resistance could be observed when both mutations were present (Dbl). Molecular clones of HIV that contained the mutations produced replication-defective virions. All three RT mutants displayed severe processivity defects. Thus, while biochemical resistance to the DNA aptamer RT1t49 can be generated in vitro via multiple mutations, the overlap between the aptamer- and template-primer-binding pockets favors mutations that also affect the RT-template-primer interaction. Therefore, viruses with such mutations are replication defective. Potent inhibition and a built-in mechanism to render aptamer-resistant viruses replication defective make this an attractive class of inhibitors
Recommended from our members
Heat shock protein 90AB1 and hyperthermia rescue infectivity of HIV with defective cores.
We previously showed that reduced infectivity of HIV with incompletely processed capsid-spacer protein 1 (CA-SP1) is rescued by cellular activation or increased expression of HSP90AB1, a member of the cytosolic heat shock protein 90 family. Here we show that HSP90AB1 is present in HIV virions and that HSP90AB1, but not nonfunctional mutated HSP90AB1(E42A+D88A), restores infectivity to HIV with mutations in CA that alter core stability. Further, the CA mutants were hypersensitive to pharmacological inhibition of HSP90AB1. In agreement with Roesch et al. (2012), we found that culturing HIV at 39.5°C enhanced viral infectivity up to 30-fold in human peripheral blood mononuclear cells (p=0.002) and rescued CA-mutant infectivity in nonactivated cells, concurrent with elevated expression of HSP90AB1 during hyperthermia. In sum, the transdominant effect of HSP90AB1 on CA-mutant HIV infectivity suggests a potential role for this class of cellular chaperones in HIV core stability and uncoating