3 research outputs found

    NRF2 promotes urothelial cell response to bacterial infection by regulating reactive oxygen species and RAB27B expression

    Get PDF
    Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) by invading urothelial cells. In response, the host mounts an inflammatory response to expel bacteria. Here, we show that the NF-E2-related factor 2 (NRF2) pathway is activated in response to UPEC-triggered reactive oxygen species (ROS) production. We demonstrate the molecular sequence of events wherein NRF2 activation in urothelial cells reduces ROS production, inflammation, and cell death, promotes UPEC expulsion, and reduces the bacterial load. In contrast, loss of NRF2 leads to increased ROS production, bacterial burden, and inflammation, both in vitro and in vivo. NRF2 promotes UPEC expulsion by regulating transcription of the RAB-GTPase RAB27B. Finally, dimethyl fumarate, a US Food and Administration-approved NRF2 inducer, reduces the inflammatory response, increases RAB27B expression, and lowers bacterial burden in urothelial cells and in a mouse UTI model. Our findings elucidate mechanisms underlying the host response to UPEC and provide a potential strategy to combat UTIs

    Coxsackievirus B3 infection early in pregnancy induces congenital heart defects through suppression of fetal cardiomyocyte proliferation

    Get PDF
    Background Coxsackievirus B (CVB) is the most common cause of viral myocarditis. It targets cardiomyocytes through coxsackie and adenovirus receptor, which is highly expressed in the fetal heart. We hypothesized CVB3 can precipitate congenital heart defects when fetal infection occurs during critical window of gestation. Methods and Results We infected C57Bl/6 pregnant mice with CVB3 during time points in early gestation (embryonic day [E] 5, E7, E9, and E11). We used different viral titers to examine possible dose-response relationship and assessed viral loads in various fetal organs. Provided viral exposure occurred between E7 and E9, we observed characteristic features of ventricular septal defect (33.6%), abnormal myocardial architecture resembling noncompaction (23.5%), and double-outlet right ventricle (4.4%) among 209 viable fetuses examined. We observed a direct relationship between viral titers and severity of congenital heart defects, with apparent predominance among female fetuses. Infected dams remained healthy; we did not observe any maternal heart or placental injury suggestive of direct viral effects on developing heart as likely cause of congenital heart defects. We examined signaling pathways in CVB3-exposed hearts using RNA sequencing, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and immunohistochemistry. Signaling proteins of the Hippo, tight junction, transforming growth factor-β1, and extracellular matrix proteins were the most highly enriched in CVB3-infected fetuses with ventricular septal defects. Moreover, cardiomyocyte proliferation was 50% lower in fetuses with ventricular septal defects compared with uninfected controls. Conclusions We conclude prenatal CVB3 infection induces congenital heart defects. Alterations in myocardial proliferate capacity and consequent changes in cardiac architecture and trabeculation appear to account for most of observed phenotypes
    corecore