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A broad-spectrum antibiotic, DCAP,
reduces uropathogenic Escherichia coli
infection and enhances vorinostat
anticancer activity by modulating
autophagy
Giulia Allavena1, Doriana Debellis2, Roberto Marotta2, Chetanchandra S. Joshi3, Indira U. Mysorekar3,4 and
Benedetto Grimaldi 1

Abstract
The cellular recycling pathway of autophagy plays a fundamental role in adaptive responses to nutrient deprivation
and other forms of stress under physiological and pathological conditions. However, autophagy can also be a double-
edge sword during certain bacterial infections (such as urinary tract infections) and in cancer, where it can be hijacked
by the pathogens and cancer cells, respectively, to promote their own survival. Thus, autophagy modulation can
potentially have multiple effects in multiple contexts and this property can be leveraged to improve outcomes. In this
report, we identify that a broad-spectrum antibiotic, 2-((3-(3, 6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl) amino)-2-
(hydroxymethyl) propane-1, 3-diol (DCAP) modulates autophagy. We employed combined biochemical, fluorescence
microscopy and correlative light electron microscopy approaches to demonstrate that DCAP treatment blocks
autophagy at the late stages by preventing autophagolysosome maturation and interrupting the autophagic flux. We
further show that, DCAP significantly reduces UPEC infection in urinary tract epithelial cells via inhibition of autophagy.
Finally, we reveal that DCAP enhances the anticancer activity of the histone acetyltransferase (HDAC) inhibitor,
vorinostat, which has been reported to increase susceptibility to bacterial infections as a common adverse effect.
Collectively, our data support the concept that DCAP represents a valuable chemical scaffold for the development of
an innovative class of bactericidal autophagy inhibitors for treatment of urinary tract infections and/or for adjuvant
therapy in cancer treatment.

Introduction
Macroautophagy (henceforth referred to as autophagy)

is a proteosomal-independent degradative mechanism
that promotes catabolism and recycling of diverse

cytoplasmic content1,2. A number of autophagy-related
genes (ATGs) are implicated in the formation and
maturation of cytoplasmic double membrane vesicles,
named autophagosomes, which engulf a variety of mac-
romolecules and organelles. Mature autophagosomes fuse
with lysosomes to form digestive acidic vescicles, called
autophagolysosomes or autolysosomes and contents are
degraded and recycled3–5.
A key autophagy gene/protein component is the

microtubule Associated Protein 1 Light Chain 3 (LC3),

© The Author(s) 2018
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Benedetto Grimaldi (benedetto.grimaldi@iit.it)
1Laboratory of Molecular Medicine, Fondazione Istituto Italiano di Tecnologia,
via Morego 30, 16163 Genova, Italy
2Electron Microscopy facility, Fondazione Istituto Italiano di Tecnologia, via
Morego 30, 16163 Genova, Italy
Full list of author information is available at the end of the article.
Edited by P. Salomoni

Official journal of the Cell Death Differentiation Association

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0002-2589-9302
http://orcid.org/0000-0002-2589-9302
http://orcid.org/0000-0002-2589-9302
http://orcid.org/0000-0002-2589-9302
http://orcid.org/0000-0002-2589-9302
http://creativecommons.org/licenses/by/4.0/
mailto:benedetto.grimaldi@iit.it


lipid-conjugated LC3 is specifically recruited to the
autophagosomal membranes, assisting both formation
and maturation of autophagosomes3. Accordingly, the
evaluation of lipid-modified LC3 and/or its cellular
localization serves as a suitable system to monitor
autophagosome turnover under diverse conditions6,7.
In addition to ATGs, scaffolding/adaptor proteins like
p62 also known as sequestosome 1 (SQSTM1) assist
the recruitment of specific targets to the autophagomes.
p62/SQSTM1, serves as a link between LC3 and
ubiquitinated substrates8. SQSTM1 and SQSTM1-
bound polyubiquitinated proteins are incorporated into
the completed autophagosome and are degraded in
autolysosomes9.
Accumulating evidence indicates that autophagy is a

fundamental adaptive response to starvation and other
forms of stress10–12, in tissue homeostasis13, cellular dif-
ferentiation and development14, and ageing15,16. Thus,
pharmacological induction of autophagy has been pro-
posed for preventing the development of human pathol-
ogies or for reversing the adverse effects of ageing17.
Nonetheless, autophagy can also be detrimental as is the

case with certain pathogens that co-opt the pathway for

their survival. For example, uropathogenic Escherichia coli
(UPEC), the predominant cause of Urinary Tract Infec-
tions (UTIs), can persist within the urinary bladder epi-
thelium (urothelium) by hijacking the autophagy pathway,
forming quiescent intracellular reservoirs within autop-
hagosomes wherein they are refractory to antibiotic
treatment18,19.
On the other hand, in case of cancer, established tumor

cells often enhance autophagic flux to increase their
survival under limited nutrition conditions and/or to
overcome chemotherapy induced stress by recycling cel-
lular components to produce alternative sources of
energy.20–22. Consequently, a block of autophagy has been
proposed as a suitable strategy for improving the antic-
ancer activity of several neoplastic agents21. As an
example, genetic or pharmacological inhibition of autop-
hagy in breast cancer cells improved the anticancer
activity of the histone de-acetyltransferase (HDAC) inhi-
bitor, vorinostat7,23.
Here we show that a recently identified broad-spectrum

antibiotic, DCAP (2-((3-(3, 6-dichloro-9H-carbazol-9-yl)-
2-hydroxypropyl) amino)-2-(hydroxymethyl) propane-1,
3-diol), can inhibit canonical autophagy in human cancer

Fig. 1 A broad-spectrum antibiotic, DCAP, modulates autophagy in human cells. a Human U2OS cells expressing the autophagic marker, LC3,
fused with a red fluorescent protein (LC3-RFP) were treated with DMSO and equimolar concentration (50 μM) of the autophagy inhibitor,
chloroquine (CQ), or the antibiotic, DCAP. Series of image frames of LC3-RFP were acquired by fluorescence microscopy at 25 min/frame over a 12 h
period (Supplementary Video S1, S2 and S3). Representative sequences of images at 0, 2.5 and 5 h displaying accumulation of LC3-RFP dots overtime
in DCAP and CQ-treated cells are shown. b Quantification of the number of fluorescent LC3-RFP dots per cell after a 2.5 and 5 h treatment with
DMSO, DCAP or CQ. The number of fluorescent dots at time zero was set to 100%. Shown as mean percentage of relative dots/cell ± s.e.m., ***P <
0.001, compounds versus DMSO (two-way ANOVA with Bonferroni post tests). c Immunoblot analysis of unconjugated (LC3-I) and lipid-conjugated
(LC3-II) form of the autophagy marker, LC3, across human bone (U2OS), mammary gland (MDA-MB-231), skin (A375, NCTC 2544) and embryonic
kidney (HEK 293) cultured cells treated 24 h with vehicle (DMSO) or 10 μM DCAP. GADPH was used as a loading control
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cells by blocking autophagic flux and preventing
maturation of autophagolysosomes. Further, DCAP-
mediated autophagy blockade limits UPEC infection of

bladder cells. Finally, DCAP enhances the anticancer
activity of vorinostat against breast cancer cells. Thus, we
propose DCAP as a valuable chemical scaffold for the

Fig. 2 DCAP blocks the autophagic flux without impairing mitochondrial potential. a–e Immunoblot analysis of LC3, SQSTM1, AMPK
phosphorylated in T172 (pAMPK) and ULK1 phosphorylated in S555 (pULK1) in U2OS cells treated 24 h with three increasing doses of DCAP (1, 5 and
10 μM) or CCCP (5, 10 and 20 μM). GAPDH was used as a loading control. Densitometry analysis of LC3-II (b), SQSTM1 (c), pAMPK (d) and pULK1 (e) is
reported as relative protein levels normalized by GAPDH. Vehicle (DMSO) sample value was set to 1 (dotted lines in the graphs). Shown as mean ± s.e.
m., n= 3. *P < 0.05; **P < 0.01; ***P < 0.001 DCAP versus CCCP (two-way ANOVA with Bonferroni post test). f Loss of mitochondrial membrane
potential (ΔΨm) was quantified by measuring the amount of monomeric JC-10 dye after 24 h of treatment with vehicle (DMSO), 10 µM DCAP or
20 µM CCCP. These doses were adopted as they produced a comparable LC3-II induction (b). Shown as mean ± s.e.m., n= 6. ***P < 0.001, CCCP
versus vehicle (one-way ANOVA). g Immunoblot analysis of cytosolic and organelles-enriched (vacuolar) preparations from cells treated 24 h with
vehicle (DMSO), 10 µM DCAP or 25 µM chloroquine (CQ). Autophagic LC3-II and lysosomal LAMP1 proteins were used to confirm the enrichment in
autophagosomes and autophagolysosomes in vacuolar fractions. Cytoplasmic TUBULIN protein was adopted to evaluate potential cytosolic
contaminations in the organelles-enriched fraction. Immunoblot with antibodies against the autophagic receptors, SQSTM1 and NBR1, showed
accumulation of these proteins in vacuolar fractions of DCAP- and CQ-treated cells. h Autophagosomal degradation of a SQSTM1 protein fused with
a Red Fluorescent Protein (RFP) was observed by live fluorescent microscopy in SQSTM1-RFP expressing cells treated with DMSO, 10 µM DCAP or
25 µM CQ. Representative images before addition of compound (time 0) and at 6, 12, and 24 h post-treatment are shown. DCAP and CQ treatment
produced accumulation of SQSTM1-fluorescent dots, overtime. Scale bar in the 24 h frame= 5 µm

Allavena et al. Cell Death and Disease  (2018) 9:780 Page 3 of 13

Official journal of the Cell Death Differentiation Association



development of antibacterial, anti-autophagic drugs to
treat UTIs and for use as combination therapy agents
along with vorinostat in breast cancer treatment.

Results
DCAP, a broad-spectrum antibiotic, negatively modulates
autophagy and inhibits autophagic degradation
To identify novel small molecule compounds affecting

autophagy, human osteosarcoma U2OS cells expressing
the protein LC3 (a marker of autophagosomes) fused with
a Red Fluorescent Protein (RFP-LC3) were monitored by
real-time fluorescence imaging in presence or absence of
selected compounds. A well-defined autophagy inhibitor,
chloroquine (CQ), was adopted as a reference. U2OS
RFP-LC3 cells treated with CQ showed a significant
accumulation of LC3-RFP-fluorescent dots overtime,
compared with vehicle (DMSO) (Fig. 1a, b and Supple-
mentary Video S1 and S2).
With this asset, we screened a subset of small molecules

present in the internal chemical collection of the Ististuto
Italiano di Tecnologia (Italy), which contains both com-
mercially available and in-house synthetized compounds.
Among them, we selected ~200 diverse and non-
redundant molecules with structural and chemical fea-
tures different from current characterized autophagy
modulators, including polyamines24, quinolones25 and
cyclic-substituted amines7,26). This screening revealed
that a carbazol-containing compound previously char-
acterized as a broad-spectrum antibiotic, 2-((3-(3, 6-
dichloro-9H-carbazol-9-yl)-2-hydroxypropyl) amino)-2-
(hydroxymethyl) propane-1, 3-diol (DCAP) was a novel
autophagy modulator. Indeed, DCAP stimulated the for-
mation of RPF-LC3 puncta when added to U2OS cells
(Fig. 1a, b and Supplementary Video S3).
Validating our fluorescence microscopy analysis, and

extending our observation to additional human cell lines,
we found that 10 µM DCAP increased the levels of
endogenous lipidated LC3 (LC3-II) in cell lines from bone
(U2OS), mammary gland (MDA-MB-231), skin (A375
and NCTC2544) and kidney (HEK-293) (Fig. 1c). Indi-
cating a specific activity of DCAP toward autophagy, two
additional commercially available carbazol-containing
compounds were not active in our screening and did
not significantly increased LC3-II protein levels in U2OS
cells (Supplementary Fig. S1).
DCAP was previously shown to disrupt bacterial

membranes by reducing transmembrane potential of
Gram-positive and Gram-negative bacteria27. However,
high doses of DCAP also affected mitochondrial mem-
brane potential of human cells, similar to the ionophore
carbonyl cyanide m-chlorophenyl hydrazone (CCCP),
whose AMPK-dependent autophagy-inducing activity is
well characterized27,28. We thus compared the effects of
DCAP and CCCP on the levels of lipid-conjugated LC3

(LC3-II), SQSTM1, and phosphorylated AMPK proteins
by immunoblot analysis with specific antibodies (Fig. 2a).
DCAP- and CCCP-treated cells accumulated high levels
of LC3-II, thus confirming that both compounds affected
autophagy (Fig. 2b). However, the two compounds gen-
erated significant opposing effects on SQSTM1 levels
(Fig. 2c). While CCCP enhanced SQSTM1 autophagy-
mediated degradation, thus reducing SQSTM1 signal,
DCAP produced a significant accumulation of SQSTM1
in a dose-dependent manner. Furthermore, DCAP pro-
duced negligible differences in the levels of phosphory-
lated AMPK and its autophagy-related target, ULK1,
compared with CCCP, which enhanced the signals of both
phosphorylated proteins (Fig. 2d, e).
A lack of AMPK activation by DCAP indicates that this

compound does not affect autophagy by impairing mito-
chondrial potential (ΔΨm) at the doses tested. To validate
this, we assessed the ΔΨm in U2OS cells treated with a
dose of DCAP and CCCP that produced a comparable
increase in LC3-II levels (10 and 20 µM, respectively—
Fig. 2b). Unlike CCCP, which induced a drastic loss of
ΔΨm, DCAP was completely ineffective (Fig. 2f).
Our observations suggest that DCAP may block

autophagy-mediated protein degradation, thus accumu-
lating immature autophagosomes and/or autophagolyso-
somes. To validate this hypothesis, we prepared cytosolic
and organelle-enriched fractions from cells treated with
DCAP or vehicle. Because CQ enhances cellular autop-
hagolysosome formation7, this compound was adopted as
a reference. Immunoblot analysis with antibodies against
LC3 confirmed the enrichment of autophagosomes/
autophagolysosomes in the organelle fractions, which
predominantly contained the membrane-bound LC3-II
form (Fig. 2g). Consistent with a DCAP-mediated block-
ade of the autophagic flux, cells treated with this com-
pound showed a marked accumulation of both LC3-II and
SQSTM1 in organelle-enriched fractions, compared with
vehicle (Fig. 2g). Furthermore, the vacuolar levels of an
additional autophagic receptor, NBR129, were also
increased by the treatment with DCAP and CQ (Fig. 2g).
We further analyzed the levels of lipidated LC3-II in

cells treated with DMSO, DCAP or CCCP in presence
with the late-stage autophagy inhibitor, Bafilomycin A1
(Supplementary Fig. S2). As expected by a treatment with
an autophagy inducer30, a co-treatment with CCCP and
Bafilomycin A1 significantly increased the levels of LC3-II
compared with DMSO and Bafilomycin A1 (Supplemen-
tary Fig. S2b). In marked contrast, the combination of
DCAP and Bafilomycin A1 generated negligible differ-
ences compared with DMSO and Bafilomycin A1 treat-
ment (Supplementary Fig. S2b). A lack of DCAP-mediated
accumulation of membrane-bound LC3-II in presence of
Bafilomycin A1 was also confirmed in organelle-enriched
preparations (Supplementary Fig. S2c).
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As an independent experimental validation that DCAP
blocks the autophagic flux, we monitored the autophagy-
mediated degradation of a SQSTM1-RFP fusion protein
by time-course fluorescent microscopy. The addition of
DCAP to the medium resulted in a progressive accumu-
lation of SQSTM1-RFP punctae (Fig. 2h and Supple-
mentary Video S4), confirming that DCAP inhibits
autophagy-dependent SQSTM1 turnover.
Collectively, our data demonstrate that DCAP possesses

autophagic inhibitory activity and blocks autophagic
degradation.

DCAP blocks autophagy at the last stage by impairing
autophagolysosome degradation
The fact that DCAP-treated cells showed accumulation

of autophagic receptors in organelle-enriched fractions
(Fig. 2g) implies that this antibiotic blocks the late stage of
autophagy by either preventing autophagosome/lysosome
fusion or avoiding autophagolysosome maturation. To
discriminate between these two diverse mechanisms,
we conducted Correlative Light Electron Microscopy
(CLEM) analysis on SQSTM1-RFP-expressing cells,
which was grown on gridded coverslip and treated with
10 µM of DCAP for 24 h. After nuclear staining with
Hoechst-33342, fluorescence images were acquired and
confirmed the presence of numerous perinuclear
SQSTM1-RFP dots. The samples imaged at the fluores-
cence microscope were next processed for TEM, obtain-
ing ultrastructural information of the same cells analyzed
by fluorescent microscopy (see representative cells in
Fig. 3a, d). The CLEM analysis showed cytoplasmic
accumulation of late degradative vacuoles in correspon-
dence of the regions containing SQSTM1-fluorescent
dots, characterized by a partially or completely absence of
internal membranes and by the presence of degraded
cytoplasmic material that appear strongly electron dense
(dark) in osmium tetroxide post-fixed TEM sections9

(Fig. 3c, f).
The morphological feature of the observed vacuoles,

together with the presence of SQSTM1 fluorescence,
clearly identify these structures as late autophagolyso-
somes and indicates that DCAP inhibits autophagy at its
last step.
In line with this concept, quantitative TEM analysis

showed significant increase of degradative vacuoles in
DCAP-treated cells, compared with DMSO treated cells
(Fig. 3g, h).

DCAP prevents lysosomal acidification without affecting
lysosomal membrane permeabilization
The observed accumulation of autophagolysosomal

structures in DCAP-treated cells indicates that this anti-
biotic may impair lysosomal function. We thus assessed
whether DCAP may affect lysosomal membrane stability

and induce lysosomal membrane permeabilization
(LMP)31. Several soluble carbohydrate-binding lectins,
such as Galectin 1, translocate to the sites of endo-
lysosomal leakage upon LMP and the evaluation of
galectin puncta formation by immunofluorescence
microscopy has been proven to be a specific method for
LMP assessment32. Accordingly, we evaluated the number
of Galectin 1 puncta in cells treated with DCAP or with L-
leucyl-L-leucine methyl ester (LLOMe), which specifically
induces lysosome membrane damage32. In addition, we
monitored the autophagic flux by assessing the amount of
SQSTM1 fluorescent dots. As expected, LLOMe-treated
cells accumulated numerous Galectin 1-positive fluores-
cence dots (Fig. 4a, b). In marked contrast, DCAP did not
significantly affected the number of Galectin 1 puncta,
while it generated a significant accumulation of SQSTM1-
positive dots (Fig. 4a–c).
Considering the LMP-independent autophagolysosome

inhibition activity of DCAP, we determined whether this
compound might block autophagy by affecting lysosomal
pH, which is the mechanism of action of several known
autophagy inhibitors, including CQ33. To this aim, we
compared the ability of DCAP or CQ in affecting the ratio
between the blue basic and green acidic form of a fluor-
escent pH indicator. The treatment with DCAP or CQ
generated similar and significant increase in basic/acidic
ratio of the indicator as compared with vehicle, thus
showing inhibition of lysosomal acidification (Fig. 4d, e).
Thus, our data demonstrate that DCAP blocks the late

stage of autophagy by inhibiting lysosomal acidification,
hence preventing the final maturation/degradation step of
autophagolysosomes.

DCAP reduces autophagy-mediated UPEC infection
Considering the role of autophagy in the pathogenesis

of UTIs18,19, wherein UPEC hijack the pathway to persist
in autophagosomes, the fact that a broad-spectrum anti-
biotic affected autophagy warranted further investigation.
We inquired this possibility in an in vitro infection assay
in 5637 bladder epithelial cells (BECs) infected with a
pathogenic E. coli strain UTI8910. We first determined the
cytotoxicity of DCAP against UTI89 cells. A dose-
response treatment of free bacteria with diverse doses of
DCAP revealed that this antibiotic was effective in redu-
cing bacterial growth starting from 30 µM (Fig. 5a). Fur-
ther analysis showed that the minimal inhibitory
concentration (MIC) of DCAP against UTI89 pathogenic
bacteria was in the low/medium micromolar range, thus
comparable with the MIC of a well-characterized beta-
lactam antibiotic, ampicillin (Fig. 5b). In marked contrast,
the single autophagy inhibitor, CQ, was completely inef-
fective against bacteria at a dose as high as 4 mM (Fig. 5b).
Considering that 10 µM DCAP did not affected the

growth of free UPEC bacteria (Fig. 5a), we decided to
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adopt this dose to specifically test a potential bactericidal-
independent/autophagy-dependent activity of DCAP
against intracellular bacteria. Similar to the observation in
other human cell lines (Supplementary Fig. S3), 10 µM of
DCAP markedly affected autophagy, but not viability, of
BECs (Fig. 5c, d). Yet, this dose significantly reduced the
number of intracellular bacteria in UPEC-infected BECs
(Fig. 5e).
To verify that DCAP-mediated reduction of intracel-

lular infection actually derived from a DCAP-dependent
blockade of autophagy, we repeated the UPEC infection in
BECs in which the expression of essential autophagy
protein, ATG16L1, was silenced by siRNA (Fig. 5f). While
scrambled control siRNA treated with DCAP showed a
significant decrease in bacterial CFUs, the treatment of

ATG16L1 silenced cells did not alter bacterial titers
(Fig. 5g). Collectively, these data indicate that DCAP
displays autophagy-mediated antibacterial activity.

DCAP improves the in vitro anticancer activity of the HDAC
inhibitor, vorinostat
In vitro studies indicated that autophagy plays a pro-

tective role in vorinostat-induced cytotoxicity against
cancer cells23. We thus evaluated the ability of DCAP in
improving the anticancer activity of the HDAC inhibitor
(HDACi), vorinostat, against breast cancer MDA-MB-231
cells. In presence of a sub-lethal dose of DCAP, vorinostat
in vitro anticancer activity significantly improved and the
concentration of this HDACi required to kill 50% of cells
(IC50) decreased by a logarithmic factor (Fig. 6a).

Fig. 3 DCAP blocks autophagy at the late stage. Correlative light electron microscopy (CLEM) on SQSTM1-RFP expressing cells treated with 10 µM
of DCAP for 24 h. a, d Superimposed maximal projections of z-stack confocal images and low magnification TEM slice projection image of two entire
representative DCAP-treated cells. b, e TEM projection image of the same cells shown in (a, d). c, f High magnification of the region boxed in (a, d)
showing a cluster of SQSTM1-fluorescent positive degradative autophagic vacuoles (AVd) containing electron dense material (dark) and membrane
remnants (asterisks). g, h Quantitative assessment of degradative vacuoles in TEM sections from cells treated with DMSO or 10 µM DCAP. Example of
cytoplasmic regions containing degradative vacuoles (asterisks) in DCAP-treated section is provided in g. Quantification in (h) is shown as mean
degradative vacuoles per cell ± s.e.m., ***P < 0.001 DCAP versus DMSO (Mann–Whitney test)
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Fig. 4 (See legend on next page.)
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We further analyzed the pharmacological interaction
between DCAP and vorinostat in affecting cell viability by
Chou-Talalay method for drug combination analysis34.
Combination Index (CI) plot obtained by dose-response
curves with vorinostat, DCAP and a constant ratio com-
bination of vorinostat and DCAP (3:1) showed a syner-
gistic interaction between the two compounds, as
indicated by a CI < 1 at different Fraction of cell affected
(Fa) (Fig. 6b). Further supporting vorinostat/DCAP
synergy, CompuSyn generated isobologram showed a
marked reduction of drug doses required to achieve a 50,
75 and 95% reduction of viable cells (ED50, ED75 and
ED95) (Fig. 6c).
These data indicate that DCAP significantly improve the

anticancer activity of the clinical relevant antineoplastic
agent, vorinostat.

Discussion
A previous screening for novel broad-spectrum anti-

biotic identified (2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-
hydroxypropyl)amino)-2-(hydroxymethyl)propane-1,3-
diol), named DCAP, as a new compound targeting the
membranes of both Gram-positive and Gram-negative
bacteria27. Accordingly, DCAP inhibited the growth of a
number of clinical pathogens, including Escherichia coli,
Pseudomonas aeruginosa, and Bacillus subtilis27.
Here we show that DCAP also possesses autophagy-

modulating activity. Specifically, DCAP reduced the
autophagic flux in a number of human cell lines from
diverse tissue sources, as indicated by increased levels of
the lipidated LC3 and the autophagy receptor, SQSTM1.
The observed accumulation of SQSTM1 and NBR1 in
autophagosome-enriched preparations can be attributed
to reduced autophagic degradation upon DCAP treat-
ment. CLEM analysis further indicated that DCAP-
mediated autophagy inhibition derived from a blockade
of the last step of the autophagy process. Indeed, DCAP-
treated SQSTM1-RFP-expressing cells accumulated
numerous autophagolysosome structures enclosing par-
tially degraded material in the corresponding regions with
elevated SQSTM1 fluorescent dots. Consistent with this,
DCAP inhibited lysosomal acidification without altering

lysosomal membrane properties, as indicated by the
absence of Galectin 1 punctae accumulation in DCAP-
treated cells.
The autophagy inhibitory activity of DCAP therefore

suggests its potential use against UTIs, which are among
the most frequently recurring infectious diseases in
humans35. Since Gram-negative UPEC are known to be
harbored within autophagosomes, a blockade of autop-
hagy has been proposed as a suitable strategy for reducing
UPEC reservoirs18. In line with this, UPEC-infected
bladder epithelial cells treated with DCAP showed a sig-
nificant reduction in intracellular bacterial persistence.
Furthermore, DCAP treatment did not affect bacterial
persistence in epithelial cells lacking the essential autop-
hagy gene, ATG16L1.
The clinically relevant autophagy inhibitor, CQ, has

been also shown to reduce intracellular UPEC bacteria, by
blocking autophaglysosome maturation10. Nonetheless,
CQ presents a reduction in neutrophil count (neu-
tropenia) as a common adverse effect36,37. Because neu-
trophils comprise a fundamental protective defense
mechanism against pathogens, drug-related neutropenia
highly increases the susceptibility to both Gram-positive
and Gram-negative bacterial infections38. In this context,
CQ presents a high liability for its use in antibacterial
treatment due to the risk of generating novel bacterial
infection. Therefore, compounds with dual inhibitory
activity against bacteria and autophagy, such as DCAP,
may be a valuable alternative.
Notably, we further showed that DCAP effectively

potentiates the anticancer activity of the clinical relevant
antineoplastic agent, vorinostat, which similar to CQ
presents neutropenia as a common adverse effect39.
Accordingly, the use of DCAP or DCAP-derived analogs
as adjuvant therapy in vorinostat treatment may be a
suitable approach to enhance anticancer activity while
preventing a chemotherapy-related increased risk of
bacterial infections.
Moreover, compared with a combination of single

antibacterial and autophagy inhibitory drugs, a molecule
having a multiple activity toward autophagy and bacteria
would present additional polypharmacology-related

(see figure on previous page)
Fig. 4 DCAP inhibits lysosome acidification without affecting lysosomal membrane permeability. a–c Lysosomal membrane permeabilization
(LMP) and autophagy in cells treated with vehicle, 10 µM DCAP or L-leucyl-L-leucine methyl ester (LLOMe), which specifically induces lysosome
membrane damage, was assessed by immunofluorescence microscopy with antibodies against a LMP-related marker, Galectin 1, and the autophagic
receptor, SQSTM1. a Representative confocal images of treated cells probed with an anti-Galectin 1/ antibody/Alexa555 (red), anti-SQSTM1/Alexa488
(green) and Hoechst 33342 nuclear staining (blue). b, c Quantification of Galectin 1- and SQSTM1-positive fluorescent dots per cell. Shown as average
number of fluorescent dots per cell ± s.e.m., n= 3. ***P < 0.001, compounds vs. DMSO (one-way ANOVA, Dunnett’s Multiple Comparison Test).
d, e The effect of 10 µM DCAP or 25 µM CQ in decreasing lysosomal acidification was assessed by measuring the ratio between blue (basic) and
green (acidic) fluorescent signals of a lysosomal pH indicator, LysoSensor Yellow/Blue dextran. Representative fluorescent images are shown in d.
Quantification is shown as average basic/acidic ratio ± s.e.m, **P < 0.01 and ***P < 0.001, compounds versus DMSO (one-way ANOVA, Dunnett’s
Multiple Comparison Test)
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advantages, including more predictive pharmacokinetics
and reduced risk of drug interactions40.
Future medicinal chemistry efforts can be now

attempted to improve DCAP biological activity toward
bacteria and autophagy, and to evaluate/optimize the
drug-like properties of this class of compounds. In this
context, a preliminary structure activity relationship
(SAR) exploration around DCAP has elucidated some
chemical and structural features associated with its anti-
bacterial potency41. In particular, the DCAP analog,

1-(3,6-dichloro-9H-carbazol-9-yl)-3-[(3-methylbutyl)
amino]propan-2-ol (10), inhibited the growth of an E. coli
strain at low micromolar doses41. Furthermore, analog 10
showed synergistic activity with kanamycin41, indicating
potential combinatorial use of these antibiotics against
UPEC.
The newly identified autophagy inhibition activity of

DCAP permits the exploration of whether DCAP analogs
with improved antibacterial potency will be still effective
in blocking autophagy. Alternatively, these studies will

Fig. 5 DCAP reduces autophagy-mediated uropathogenic E.coli infection. a Growth curves of free uropathogenic E. coli bacteria (UPEC) in
presence or absence of the indicated DCAP concentrations. b Measurements of the minimum inhibitory concentration (MIC) of growth against UPEC
bacteria of DCAP, CQ or the well-characterized beta-lactam antibiotic, ampicillin. c Immunoblot analysis of protein samples from Bladder Epithelial
Cells (BECs) treated 24 h with vehicle (DMSO) or 10 µM DCAP, showing DCAP-mediated accumulation of LC3-II and SQSTM1. GAPDH was used as a
loading control. d The potential cytotoxicity of 10 µM DCAP against BECs was evaluated by lactate dehydrogenase (LDH) cytotoxic assay. Indicating
the tolerability of BECs toward this dose of compound, cells treated for 24 h showed negligible differences in the release of LDH in the medium,
compared with vehicle-treated cells. Reported as percentage of LDH cytotoxicity ± s.e.m., n= 6. e BECs were infected with a pathogenic UTI89 E. coli
strain. After the removal of extracellular bacteria by gentamycin, an antibiotic that is not permeable through the human cell membrane, BECs were
treated with 10 µM DCAP or vehicle for 24 h. The counting of intracellular bacteria from DMSO- and DCAP-treated infected cells is reported as an
average of the colony-forming unit (CFU)/ml ± s.e.m., n= 12. **P < 0.01 DCAP vs. DMSO (Mann–Whitney test). f Immunoblot analysis of protein
extract from BECs transfected with a siRNA sequences against ATG16L1 or a non-targeting element (control). GAPDH was used as a loading control.
g Quantification of intracellular UPEC bacteria in infected siATG16L1 and control BECs treated with 10 µM or DMSO. Shown as average CFU/ml ± s.e.
m., n= 7. *P < 0.05 DCAP vs. DMSO (Mann–Whitney test)
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provide important information on the structural and
chemical features associated with DCAP-mediated
autophagy inhibition, allowing further chemical optimi-
zation to improve the bactericidal activity while preser-
ving the autophagy inhibitory feature.
In conclusion, our data identify DCAP as a novel multi-

target molecule acting on both autophagy and bacteria,
and support the future development of this compound for
the delivery of bactericidal autophagy blockers for uro-
pathogenic infections and for antibacterial adjuvant
therapy in cancer treatment.

Materials and Methods
Chemicals
2-((3-(3,6-dichloro-9H-carbazol-9-yl)-2-hydroxypropyl)

amino)-2-(hydroxymethyl)propane-1,3-diol (DCAP) (Sigma,
SML0515-5MG), Carbonyl Cyanide 3-ChloroPhenyl-
hydrazone (CCCP) (Sigma, C2759), H-Leu-Leu-OMe
hydrochloride (LLOMe) (Santa Cruz, sc-285992), vor-
inostat (Sigma, SML0061), chloroquine (Sigma, C6628),
bafilomycin A1 (Sigma, B1793), digitonin (Sigma, D141).
All compounds were dissolved in dimethyl sulfoxide
(DMSO) and a “compound-free” DMSO solution as a
comparison (vehicle) was adopted to rule out potential
compound-independent biological activity related with
the DMSO.

Cell culture
Human osteosarcoma cells U2OS, human embryonic

kidney cells 293 (HEK293), human melanoma cancer cells
A375 and human urinary bladder epithelial carcinoma
cells (5637, HTB9) were acquired from American Type
Culture Collection and the National Collection of Type
Cultures (ATCC), were grown in Dulbecco’s modified
Eagle’s medium (DMEM, Euroclone, ECB7501L) with
4.5 g/L glucose supplemented with 10% fetal bovine
serum (FBS, Gibco, 10270106), 2 mM L-glutamine and 1%
Penicillin/streptomycin. Breast cancer cells, MDA-MB-
231, were cultured in DMEM with 4.5 g/L glucose sup-
plemented with 5% FBS, 4mM L-glutamine and 1%
Penicillin/streptomycin. Bladder carcinoma cells, 5637,
and human keratinocyte NCTC2544 were cultured in
RPMI 1640 medium (Euroclone, ECB9006L) supple-
mented with 10% FBS and 2 mM L-glutamine. All cell
lines were grown at 37 °C in a humidified atmosphere with
5% CO2.

Live fluorescence microscopy
The Premo™ Autophagy Sensor RFP-p62 Kit and

Premo™ Autophagy Sensor LC3B-RFP (BacMam 2.0)
(Invitrogen™, P36241 and P36236) were used to over-
express the autophagic marker p62 and LC3 according to
company instruction. Briefly, cells were seeded on 48-well
plates with bottom glass (Mattek Corporation, P48G-

Fig. 6 DCAP improves in vitro anticancer activity of vorinostat.
a Concentration response plots of vorinostat cytotoxicity against
breast cancer MDA-MB-231 cells in presence (red line) or absence
(black line) of 5 μM DCAP for 72 h. Values of cells treated with vehicle
(DMSO) were set to 100% of number of cells. Compound
concentration is reported as log[μM]. The data expressed as mean ± s.
e.m, n= 6. **P < 0.01 and ***P < 0.001, presence vs. absence of DCAP
(two-way ANOVA with Bonferroni post test). b Combination Index plot
obtained from dose-response curves of vorinostat, DCAP and a
constant ratio combination of vorinostat and DCAP (3:1) in MDA-MB-
231 cells. Fa= Fraction of cells Affected by the treatments.
c Isolobograms of drug doses of vorinostat, DCAP or a combination of
both compounds, required to achieve a 50% (blue), 75% (red) and
95% (green) reduction of viable cells (ED50, ED75 and ED95)
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1.5-6-F) and the day after infected with viruses expressing
p62-RFP or LC3-RFP. Forty-eight hours later, cells were
treated and recorded with a fluorescent inverted micro-
scope Eclipse Ti-E (Nikon), with an Okolab incubation
system to maintain a humidified atmosphere, 37 °C and
5% CO2 during the duration of the experiment.

Immunoblot analysis
Proteins were extracted by scraping cells in presence of

Radio Immunoprecipitation Assay Buffer (RIPA) and
protein concentration quantified with BCA assay (Euro-
clone, EMP014500). Western blot analyses were per-
formed on 20 µg of protein extracts, added with 4× of
Laemmli Buffer+ 100 mM DTT (Biorad, 161-0747) and
denatured at 95 °C for 5 min. Samples were run on 4–15%
polyacrylamide gels at 90–130 V and then transferred
onto nitrocellulose membrane (GeHealthcare Life Sci-
ence, 10600001) for 2 h at 100 V and 1.5 A of maximum
electric current intensity. After blocking in 5% non-fat
milk in TBS-Tween 20 0,1% (TBST), membranes were
probed overnight at 4 °C with anti-LC3 primary antibody
(1: 2000, MBL), anti-SQSTM1 (1:2000, Santa Cruz), anti-
NBR1 (1:1000, Cell Signalling), anti-pULK1 s555 (1:1000,
Cell Signalling), anti-LAMP1 (1:1000, cell Signalling),
anti-GAPDH (1:1000, Invitrogen), anti-Actin (1:100 000,
A1978), anti-Tubulin (Cell Signalling, 2128S). Next day,
membranes were incubated with horseradish peroxidase-
conjugated secondary antibody (goat-anti-rabbit or goat-
anti-mouse, Millipore) at room temperature for 1 h.
Proteins were visualized by the chemiluminescent sub-
strate, ECL Star (Euroclone, EMP001005), using the
ImageQuant LAS-4000 Chemiluminescence and Fluor-
escence Imaging System (Fujitsu Life Science). Densito-
metry analysis was carried out using ImageJ software
1.51n (Wayne Rasband, National Institutes of Health).

Autophagosome-enriched preparation
Autophagosome-enriched preparation has been per-

formed as described previously42,43. Briefly, cells treated
with DCAP or chloroquine (CQ) were collected using
trypsin and collected by low speed centrifugation. Packed
cell pellets were resuspended in phosphate-buffered sal-
ine, PBS, (Sigma-Aldrich, D8537) containing 100 μg/ml of
digitonin, then cytosolic and organelle-bound proteins
were separated by centrifugation at 7000 r.p.m. for 8 min.
Organelle-enriched pellets were solubilized in RIPA buf-
fer, mixed with Laemmli buffer and DTT and boiled as
reported above.

Measurement of mitochondrial membrane potential
Mitochondrial membrane potential was evaluated using

the Mitochondrial Membrane Potential Kit (MAK159,
Sigma), according to manufacturer instructions. Briefly,
cell were seeded in black 96-well culture plates with clear

bottom (Perkin Elmer); after 24 h of treatment with
DCAP 10 μM or CCCP 20 µM, cells were stained 1 h at
37 °C with JC-10 Dye and then read with Tecan Wallac
microplate reader. Ratio 525 nm/590 nm was used to
evaluate membrane potential of treated samples over
control.

Lysosomal membrane permeabilization assay
For lysosomal membrane permeabilization assay, cells

were grown on coverslips and treated for 24 h with 10 μM
DCAP or 25 μM CQ. A treatment with 2 mM LLoME for
2 h was used as a control32. Samples were then fixed with
methanol for 10 min, washed twice with PBS, permeabi-
lized with 0.1% Triton X and blocked with 3% BSA. Cells
staining was performed separately with Galectin 1 anti-
body (1:1000 in BSA 3%, Abcam, ab25138) and SQSTM1
(Santa Cruz, B0316) overnight at 4 °C; matching Alexa
Fluor 488- or 555-coupled secondary antibodies (Invi-
trogen, A11029 and A-21429) were probed 1 h at room
temperature with 1:200 dilutions. Images were acquired
with A1R+/ A1+ confocal laser microscope system
Nikon and quantified using ImageJ software 1.51n
(Wayne Rasband, National Institutes of Health).

Lysosomal pH determination
The LysoSensor yellow/blue dextran Kit (Invitrogen,

L22460) was used to investigate lysosomal acidification
alteration. Cells were loaded with 0.5 mg/ml of dye and
treated with DCAP or CQ. After 24 h, cells media were
replaced with medium without phenol red and dye.
Fluorescence was observed with A1R+/ A1+ confocal
laser microscope system Nikon. Since the LysoSensor Dye
exhibit a dual emission, pH dependent-fluorescence, ratio
of blue over green fluorescence was quantified using
ImageJ software 1.51n (Wayne Rasband, National Insti-
tutes of Health).

Transmission electron microscopy (TEM) and correlative
light electron microscopy (CLEM)
SQSTM1-RFP expressing cells grown on photoetched

gridded coverslips (Bellco Glass Inc., USA) and treated
with 10 µM DCAP for 24 h. Live cell fluorescence were
then imaged using a laser scanning confocal microscope
equipped with a resonant scanner (Nikon A1R) and fur-
ther processed for TEM as previously described7. Briefly,
the embedded cells were released from the coverslip by
transferring the sample between liquid nitrogen and hot
water. Sections of about 70 nm were cut with a Diatome
diamond knife on a Leica EM UC6 ultramicrotome. TEM
images were obtained with a JEOL JEM 1011 Transmis-
sion Electron Microscope operating at 100 kV of accel-
eration voltage and recorded with a 2Mp charge-coupled
device (CCD) camera (Gatan Orius SC100). Quantifica-
tions of degradative vacuoles was performed on more

Allavena et al. Cell Death and Disease  (2018) 9:780 Page 11 of 13

Official journal of the Cell Death Differentiation Association



than 15 cells/samples on TEM processed samples, as
previously described44.

In vitro UPEC infections
In vitro infection assay was performed as described

elsewhere10. Briefly, a clinical UPEC isolate, UTI89, was
grown statically for 17 h in Luria-Bertani (LB) broth at 37 °
C prior to infection of cells. Confluent 5637 cells were
challenged with UPEC. After bacteria were added, plates
were centrifuged at 120 × g for 5 min, and then incubated
for 1 h at 37 °C. Extracellular bacteria were then removed
by washing twice with PBS, and medium containing 0.1
mg/mL gentamicin was added to remove extracellular
bacteria. 5637 cells were then incubated in gentamicin-
containing medium in presence of DCAP for an addi-
tional 23 h (referred to as 24 h post infection [hpi]). Next
day, 5637 cells were washed and treated with 0.1% Triton-
X 100 to release bacteria. Serial dilutions of bacteria were
plated on LB agar, and colony-forming units were
counted.

Cytotoxicity assay
Cell counting was performed with Countess II Auto-

mated Cell Counter (Thermofisher) in presence of Trypan
blue dye to discriminate live and death cells. Proliferation
and viability was assessed by Cyquant assay (Invitrogen)
as previously described7. For drug interaction analysis,
combination Index (CI) plot and isobologram were gen-
erated by Compusyn software34.

Statistical analysis
Log(inhibitor)-versus-response curves and statistical

analysis tests were conducted with GraphPad Prism
software (San Diego, CA, USA). A p value < 0.05 was
considered significant.
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