32 research outputs found

    The effects of diet and mating system on reproductive (and post‐reproductive) life span in a freshwater snail

    Get PDF
    The length of the reproductive life span, along with the number/frequency/magnitude of reproductive events, quantifies an individual’s potential contribution to the next generation. By examining reproductive life span, and distinguishing it from somatic life span, we gain insight into critical aspects of an individual’s potential fitness as well as reproductive and somatic senescence. Additionally, differentiating somatic and reproductive life spans can provide insight into the existence of a post‐reproductive period and factors that shape its duration. Given the known importance of diet and mating system on resource allocation, I reared individual freshwater snails (Physa acuta) from 22 full‐sib families under a 2 × 2 factorial design that crossed mate availability (available [outcrossing] or not [selfing]) and diet (Spirulina or lettuce) and quantified aspects of the entire life history enabling me to distinguish reproductive and somatic life spans, determine the total number of reproductive events, and evaluate how the reproductive rate changes with age. Overall, mated snails experienced shorter reproductive and somatic life spans; a diet of Spirulina also shortened both reproductive and somatic life spans. A post‐reproductive period existed in all conditions; its duration was proportional to somatic but not reproductive life span. I evaluate several hypotheses for the existence and duration of the post‐reproductive period, including a novel hypothesis that the post‐reproductive period may result from an increase in reproductive interval with age. I conclude that the post‐reproductive period may be indicative of a randomly timed death occurring as the interval between reproductive events continues to increase. As such, a “post‐reproductive” period can be viewed as a by‐product of a situation where reproductive senescence outpaces somatic senescence

    Annotated Checklist of the Avian Species Observed at the Gordon Natural Area (West Chester University, PA) 2004-2020. Version IX. Data from eBird (through 7/20/2020) and from the 2004 West Chester Bird Club Survey of the GNA.ersion IX.

    Get PDF
    Summary Data Number of Surveys: 108 \u27Site Visits\u27 by 28 Birders. Note: this does not count the birders who participated in the 2004 West Chester Bird Club Survey as they were not identified on the species checklist. Number of Taxa: 125 Species, in 86 Genera and 38 Families. Abundances The color of each month\u27s \u27box\u27 represents the average number of individuals observed during all surveys during that month (see key at the bottom of the page). The first number within the \u27box\u27 for each month represents the number of days in which that species was observed during the month; the second number represents the total number of days of surveying for that month. Audubon Priority Birds: are birds of significant conservation need, for which our actions, over time, can lead to measurable improvements in status (Audubon 2020a). PBS Status Data are from the Pennsylvania Biological Survey (PBS 2020). IUCN Status: Data are from the The IUCN Red List of Threatened Species (IUCN 2020). Threats The 2014 climate threat assessment data are from Audubon (2020b). The 2020 climate threat assessment data (Audubon 2020c) were compiled from a query based on species\u27 statuses in Zip Code 19383 and a query for species\u27 statuses in Pennsylvania. The default was data for Zip Code 19383, whenever these were available. Foraging Strategies and Food Sources Data were compiled from the Audubon Guide to North American Birds website (Audubon 2020d). Ground Foraging Species (i.e., species that are either ground foragers or foliage-gleaners and which forage on invertebrates) were determined based on Conover (2011)

    Diet alters delayed selfing, inbreeding depression, and reproductive senescence in a freshwater snail

    Get PDF
    Reproductive success is a critical fitness attribute that is directly influenced by resource availability. Here, we investigate the effects of diet-based resource availability on three interrelated aspects of reproductive success: a change in mating system based on mate availability, consequent inbreeding depression, and the deterioration of reproductive efficiency with age (senescence). We employed a factorial experimental design using 22 full-sib families of the hermaphroditic freshwater snail Physa acuta to explore these interactions. Individual snails were reared in one of two mate-availability treatments (isolated [selfing] or occasionally paired [outcrossing]) and one of two diet treatments (boiled lettuce or Spirulina, an algae that is rich in protein, vitamins, and minerals). Spirulina-fed snails initiated reproduction at a 13% earlier age and 7% larger size than lettuce-fed snails. Spirulina also resulted in a 30% reduction in the time delay before selfing. Compared to lettuce, a diet of Spirulina increased inbreeding depression by 52% for egg hatching rate and 64% for posthatching juvenile survival. Furthermore, Spirulina led to a 15-fold increase in the rate of reproductive senescence compared with a diet of lettuce. These transgenerational, interactive effects of diet on inbreeding depression and reproductive senescence are discussed in the context of diet-induced phenotypic plasticity

    Evolutionary change in continuous reaction norms

    Get PDF
    Abstract Understanding the evolution of reaction norms remains a major challenge in ecology and evolution. Investigating evolutionary divergence in reaction norm shapes between populations and closely related species is one approach to providing insights. Here we use a meta-analytic approach to compare divergence in reaction norms of closely related species or populations of animals and plants across types of traits and environments. We quantified mean-standardized differences in overall trait means (Offset) and reaction norm shape (including both Slope and Curvature). These analyses revealed that differences in shape (Slope and Curvature together) were generally greater than differences in Offset. Additionally, differences in Curvature were generally greater than differences in Slope. The type of taxon contrast (species vs. population), trait, organism, and the type and novelty of environments all contributed to the best-fitting models, especially for Offset, Curvature, and the total differences (Total) between reaction norms. Congeneric species had greater differences in reaction norms than populations, and novel environmental conditions increased the differences in reaction norms between populations or species. These results show that evolutionary divergence of curvature is common and should be considered an important aspect of plasticity, together with slope. Biological details about traits and environments, including cryptic variation expressed in novel environmental conditions, may be critical to understanding how reaction norms evolve in novel and rapidly changing environments

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore