3 research outputs found

    Comparing Community Needs and REDD+ Activities for Capacity Building and Forest Protection in the Équateur Province of the Democratic Republic of Congo

    No full text
    Primary forests are essential ecosystems that can play a key role in mitigating climate change. REDD+ is designed to help countries and communities secure benefits for avoiding deforestation but has faced significant implementation challenges. There are substantial potential benefits for REDD+ in the Democratic Republic of Congo (DRC), where shifting agriculture is the major cause of deforestation. However, implementation requires significant capacity building in a number of sectors and at a number of levels. This paper explores how well the capacity building activities within the DRC REDD+ strategy are aligned with the capacity needs identified by provincial government stakeholders and local communities in the Équateur province of the DRC, identified through workshops and surveys. The research suggests that while many technical capacity needs identified by stakeholders could be potentially addressed by the REDD+ strategy, there are number of systemic capacity needs that are unlikely to be addressed. Failure to address these needs risks undermining any implementation of REDD+. The results suggest that education and training in governance and management, as well as fundamental education in sustainability, are key capacity needs that REDD+ may need to incorporate. The results also provide further evidence that REDD+ projects need to be long-term and take into account the local context and needs in order to be effective

    Comparing Community Needs and REDD+ Activities for Capacity Building and Forest Protection in the Équateur Province of the Democratic Republic of Congo

    No full text
    Primary forests are essential ecosystems that can play a key role in mitigating climate change. REDD+ is designed to help countries and communities secure benefits for avoiding deforestation but has faced significant implementation challenges. There are substantial potential benefits for REDD+ in the Democratic Republic of Congo (DRC), where shifting agriculture is the major cause of deforestation. However, implementation requires significant capacity building in a number of sectors and at a number of levels. This paper explores how well the capacity building activities within the DRC REDD+ strategy are aligned with the capacity needs identified by provincial government stakeholders and local communities in the Équateur province of the DRC, identified through workshops and surveys. The research suggests that while many technical capacity needs identified by stakeholders could be potentially addressed by the REDD+ strategy, there are number of systemic capacity needs that are unlikely to be addressed. Failure to address these needs risks undermining any implementation of REDD+. The results suggest that education and training in governance and management, as well as fundamental education in sustainability, are key capacity needs that REDD+ may need to incorporate. The results also provide further evidence that REDD+ projects need to be long-term and take into account the local context and needs in order to be effective

    Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin

    No full text
    Globally, tropical forests are assumed to be an important source of atmospheric nitrous oxide (N2O) and sink for methane (CH4). Yet, although the Congo Basin comprises the second largest tropical forest and is considered the most pristine large basin left on Earth, in situ N2O and CH4 flux measurements are scarce. Here, we provide multi-year data derived from on-ground soil flux (n = 1558) and riverine dissolved gas concentration (n = 332) measurements spanning montane, swamp, and lowland forests. Each forest type core monitoring site was sampled at least for one hydrological year between 2016 - 2020 at a frequency of 7-14 days. We estimate a terrestrial CH4 uptake (in kg CH4-C ha−1 yr−1) for montane (−4.28) and lowland forests (−3.52) and a massive CH4 release from swamp forests (non-inundated 2.68; inundated 341). All investigated forest types were a N2O source (except for inundated swamp forest) with 0.93, 1.56, 3.5, and −0.19 kg N2O-N ha−1 yr−1 for montane, lowland, non-inundated swamp, and inundated swamp forests, respectively.ISSN:2041-172
    corecore