1,738 research outputs found

    HIV dynamics and natural history studies: Joint modeling with doubly interval-censored event time and infrequent longitudinal data

    Full text link
    Hepatitis C virus (HCV) coinfection has become one of the most challenging clinical situations to manage in HIV-infected patients. Recently the effect of HCV coinfection on HIV dynamics following initiation of highly active antiretroviral therapy (HAART) has drawn considerable attention. Post-HAART HIV dynamics are commonly studied in short-term clinical trials with frequent data collection design. For example, the elimination process of plasma virus during treatment is closely monitored with daily assessments in viral dynamics studies of AIDS clinical trials. In this article instead we use infrequent cohort data from long-term natural history studies and develop a model for characterizing post-HAART HIV dynamics and their associations with HCV coinfection. Specifically, we propose a joint model for doubly interval-censored data for the time between HAART initiation and viral suppression, and the longitudinal CD4 count measurements relative to the viral suppression. Inference is accomplished using a fully Bayesian approach. Doubly interval-censored data are modeled semiparametrically by Dirichlet process priors and Bayesian penalized splines are used for modeling population-level and individual-level mean CD4 count profiles. We use the proposed methods and data from the HIV Epidemiology Research Study (HERS) to investigate the effect of HCV coinfection on the response to HAART.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS391 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Causal Comparisons in Randomized Trials of Two Active Treatments: The Effect of Supervised Exercise to Promote Smoking Cessation

    Get PDF
    In behavioral medicine trials, such as smoking cessation trials, two or more active treatments are often compared. Noncompliance by some subjects with their assigned treatment poses a challenge to the data analyst. Causal parameters of interest might include those defined by subpopulations based on their potential compliance status under each assignment, using the principal stratification framework (e.g., causal effect of new therapy compared to standard therapy among subjects that would comply with either intervention). Even if subjects in one arm do not have access to the other treatment(s), the causal effect of each treatment typically can only be identified from the outcome, randomization and compliance data within certain bounds. We propose to use additional information -- compliance-predictive covariates -- to help identify the causal effects. Our approach is to specify marginal compliance models conditional on covariates within each arm of the study. Parameters from these models can be identified from the data. We then link the two compliance models through an association model that depends on a parameter that is not identifiable, but has a meaningful interpretation; this parameter forms the basis for a sensitivity analysis. We demonstrate the benefit of utilizing covariate information in both a simulation study and in an analysis of data from a smoking cessation trial

    Varying-coefficient models for longitudinal processes with continuous-time informative dropout.

    Get PDF
    Dropout is a common occurrence in longitudinal studies. Building upon the pattern-mixture modeling approach within the Bayesian paradigm, we propose a general framework of varying-coefficient models for longitudinal data with informative dropout, where measurement times can be irregular and dropout can occur at any point in continuous time (not just at observation times) together with administrative censoring. Specifically, we assume that the longitudinal outcome process depends on the dropout process through its model parameters. The unconditional distribution of the repeated measures is a mixture over the dropout (administrative censoring) time distribution, and the continuous dropout time distribution with administrative censoring is left completely unspecified. We use Markov chain Monte Carlo to sample from the posterior distribution of the repeated measures given the dropout (administrative censoring) times; Bayesian bootstrapping on the observed dropout (administrative censoring) times is carried out to obtain marginal covariate effects. We illustrate the proposed framework using data from a longitudinal study of depression in HIV-infected women; the strategy for sensitivity analysis on unverifiable assumption is also demonstrated
    corecore