514 research outputs found

    Editorial

    Get PDF

    Molecular electron microscopy approaches to elucidating the mechanisms of protein fibrillogenesis

    Get PDF
    Electron microscopy (EM) has played a central role in our current understanding of the mechanisms underlying the pathogenesis of several amyloid diseases, including Alzheimer's disease, Parkinson's disease, and prion diseases. In this chapter, we discuss the application of various EM techniques to monitor and characterize quaternary structural changes during amyloid fibril formation in vitro and the potential of extending some of these techniques to characterizing ex vivo material. In particular, we would like to bring to the attention of the reader two very powerful molecular EM techniques that remain under utilized by researchers in the amyloid community, namely scanning transmission electron microscopy and single particle molecular averaging EM. An overview of the strength and limitations of these techniques as tools for elucidating the structural basis of amyloid fibril formation will be presented

    The Location of the Carboxy-Terminal Region of γ Chains in Fibrinogen and Fibrin D Domains

    Get PDF
    Elongated fibrinogen molecules are comprised of two outer “D” domains, each connected through a “coiled-coil” region to the central “E” domain. Fibrin forms following thrombin cleavage in the E domain and then undergoes intermolecular end-to-middle D:E domain associations that result in double-stranded fibrils. Factor XIIIa mediates crosslinking of the C-terminal regions of γ chains in each D domain (the γXL site) by incorporating intermolecular ɛ-(γ-glutamyl)lysine bonds between amine donor γ406 lysine of one γ chain and a glutamine acceptor at γ398 or γ399 of another. Several lines of evidence show that crosslinked γ chains extend “transversely” between the strands of each fibril, but other data suggest instead that crosslinked γ chains can only traverse end-to-end-aligned D domains within each strand. To examine this issue and determine the location of the γXL site in fibrinogen and assembled fibrin fibrils, we incorporated an amine donor, thioacetyl cadaverine, into glutamine acceptor sites in fibrinogen in the presence of XIIIa, and then labeled the thiol with a relatively small (0.8 nm diameter) electron dense gold cluster compound, undecagold monoaminopropyl maleimide (Au11). Fibrinogen was examined by scanning transmission electron microscopy to locate Au11-cadaverine-labeled γ398/399 D domain sites. Seventy-nine percent of D domain Au11 clusters were situated in middle to proximal positions relative to the end of the molecule, with the remaining Au11 clusters in a distal position. In fibrin fibrils, D domain Au11 clusters were located in middle to proximal positions. These findings show that most C-terminal γ chains in fibrinogen or fibrin are oriented toward the central domain and indicate that γXL sites in fibrils are situated predominantly between strands, suitably aligned for transverse crosslinking

    Evidence for a Second Type of Fibril Branch Point in Fibrin Polymer Networks, the Trimolecular Junction

    Get PDF
    Fibrin molecules polymerize to double-stranded fibrils by intermolecular end-to-middle domain pairing of complementary polymerization sites, accompanied by fibril branching to form a clot network. Mass/length measurements on scanning transmission electron microscopic images of fibrils comprising branch points showed two types of junctions. Tetramolecular junctions occur when two fibrils converge, creating a third branch with twice the mass/length of its constituents. Newly recognized trimolecular junctions have three fibril branches of equal mass/length, and occur when an extraneous fibrin molecule initiates branching in a propagating fibril by bridging across two unpaired complementary polymerization sites. When trimolecular junctions predominate, clots exhibit nearly perfect elasticity

    The Rescue of Fannie Mae and Freddie Mac

    Get PDF
    Staff Report including the following:- Describes and evaluates the measures taken by the U.S. government to rescue Fannie Mae and Freddie Mac in September 2008. - Outlines the business model of these two firms and their role in the U.S. housing finance system. - The sources of financial distress that the firms experienced and the events that ultimately led the government to take action. - Describes the various resolution options available to policymakers. - Evaluates the success of the choice of conservatorship and other actions taken

    Editorial

    Get PDF

    Anticytomegalovirus Peptides Point to New Insights for CMV Entry Mechanisms and the Limitations of In Vitro Screenings

    Get PDF
    Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that can cause severe disease following in utero exposure, during primary infection, or la- tent virus reactivation in immunocompromised populations. These complications lead to a 1- to 2-billion-dollar economic burden, making vaccine development and/or alternative treatments a high priority. Current treatments for HCMV include nucleoside analogues such as ganciclovir (GCV), foscarnet, and cidofovir. Recently, letermovir, a terminase complex inhibitor, was approved for prophylaxis after stem cell transplantation. These treatments have unwanted side effects, and HCMV is be- coming resistant to them. Therefore, we sought to develop an alternative treatment that targets a different stage in viral infection. Currently, small antiviral peptides are being investigated as anti-influenza and anti-HIV treatments. We have developed heparan sulfate-binding peptides as tools for preventing CMV infections. These pep- tides are highly effective at stopping infection of fibroblasts with in vitro-derived HCMV and murine cytomegalovirus (MCMV). However, they do not prevent MCMV infection in vivo. Interestingly, these peptides inhibit infectivity of in vivo-derived CMVs, albeit not as well as tissue culture-grown CMVs. We further demonstrate that this class of heparan sulfate-binding peptides is incapable of inhibiting MCMV cell- to-cell spread, which is independent of heparan sulfate usage. These data indicate that inhibition of CMV infection can be achieved using synthetic polybasic peptides, but cell-to-cell spread and in vivo-grown CMVs require further investigation to de- sign appropriate anti-CMV peptides

    Mitochondrial Epigenetic Changes Link to Increased Diabetes Risk and Early-Stage Prediabetes Indicator

    Get PDF
    Type 2 diabetes (T2D) is characterized by mitochondrial derangement and oxidative stress. With no known cure for T2D, it is critical to identify mitochondrial biomarkers for early diagnosis of prediabetes and disease prevention. Here we examined 87 participants on the diagnosis power of fasting glucose (FG) and hemoglobin A1c levels and investigated their interactions with mitochondrial DNA methylation. FG and A1c led to discordant diagnostic results irrespective of increased body mass index (BMI), underscoring the need of new biomarkers for prediabetes diagnosis. Mitochondrial DNA methylation levels were not correlated with late-stage (impaired FG or A1c) but significantly with early-stage (impaired insulin sensitivity) events. Quartiles of BMI suggested that mitochondrial DNA methylation increased drastically from Q1 (20 < BMI < 24.9, lean) to Q2 (30 < BMI < 34.9, obese), but marginally from Q2 to Q3 (35 < BMI < 39.9, severely obese) and from Q3 to Q4 (BMI > 40, morbidly obese). A significant change was also observed from Q1 to Q2 in HOMA insulin sensitivity but not in A1c or FG. Thus, mitochondrial epigenetic changes link to increased diabetes risk and the indicator of early-stage prediabetes. Further larger-scale studies to examine the potential of mitochondrial epigenetic marker in prediabetes diagnosis will be of critical importance for T2D prevention
    corecore