6 research outputs found

    Hypoxia Attenuates Pressure Overload-Induced Heart Failure

    Get PDF
    Background Alveolar hypoxia is protective in the context of cardiovascular and ischemic heart disease; however, the underlying mechanisms are incompletely understood. The present study sought to test the hypothesis that hypoxia is cardioprotective in left ventricular pressure overload (LVPO)–induced heart failure. We furthermore aimed to test that overlapping mechanisms promote cardiac recovery in heart failure patients following left ventricular assist device‐mediated mechanical unloading and circulatory support. Methods and Results We established a novel murine model of combined chronic alveolar hypoxia and LVPO following transverse aortic constriction (HxTAC). The HxTAC model is resistant to cardiac hypertrophy and the development of heart failure. The cardioprotective mechanisms identified in our HxTAC model include increased activation of HIF (hypoxia‐inducible factor)‐1α–mediated angiogenesis, attenuated induction of genes associated with pathological remodeling, and preserved metabolic gene expression as identified by RNA sequencing. Furthermore, LVPO decreased Tbx5 and increased Hsd11b1 mRNA expression under normoxic conditions, which was attenuated under hypoxic conditions and may induce additional hypoxia‐mediated cardioprotective effects. Analysis of samples from patients with advanced heart failure that demonstrated left ventricular assist device–mediated myocardial recovery revealed a similar expression pattern for TBX5 and HSD11B1 as observed in HxTAC hearts. Conclusions Hypoxia attenuates LVPO‐induced heart failure. Cardioprotective pathways identified in the HxTAC model might also contribute to cardiac recovery following left ventricular assist device support. These data highlight the potential of our novel HxTAC model to identify hypoxia‐mediated cardioprotective mechanisms and therapeutic targets that attenuate LVPO‐induced heart failure and mediate cardiac recovery following mechanical circulatory support

    Early life undernutrition reduces maximum treadmill running capacity in adulthood in mice.

    No full text
    Introduction: Undernutrition during early life causes chronic disease with specific impairments to the heart and skeletal muscle. Purpose: To determine the effects of early-life undernutrition on adult exercise capacity as a result of cardiac and skeletal muscle function. Methods: Pups were undernourished during gestation (GUN) or lactation (PUN) using a cross-fostering nutritive mouse model. At postnatal day 21 (PN21), all mice were weaned and refed a control diet. At PN67, mice performed a maximal treadmill test. Echocardiography and Doppler blood flow analysis was performed at PN72, following which skeletal muscle cross-sectional area (CSA) and fiber type were determined. Results: Maximal running capacity was reduced (Diet: P=0.0002) in GUN and PUN mice. Left ventricular mass (Diet: P=0.03) and posterior wall thickness during systole (Diet*Sex: P=0.03) of GUN and PUN mice was reduced, causing PUN mice to have reduced (Diet: P=0.04) stroke volume (SV). Heart Rate (HR) of GUN mice showed a trend (Diet: P=0.07) towards greater resting values than other groups. PUN mice had greater CSA of SOL fibers. PUN had a reduced (Diet: P=0.03) proportion of type-IIX fibers in the EDL and a greater (Diet: P=0.008) percentage of type-IIB fibers in the EDL. Conclusion: Gestational and Postnatal undernourishment impairs exercise capacity.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Hypoxia Attenuates Pressure Overload‐Induced Heart Failure

    No full text
    Background Alveolar hypoxia is protective in the context of cardiovascular and ischemic heart disease; however, the underlying mechanisms are incompletely understood. The present study sought to test the hypothesis that hypoxia is cardioprotective in left ventricular pressure overload (LVPO)–induced heart failure. We furthermore aimed to test that overlapping mechanisms promote cardiac recovery in heart failure patients following left ventricular assist device‐mediated mechanical unloading and circulatory support. Methods and Results We established a novel murine model of combined chronic alveolar hypoxia and LVPO following transverse aortic constriction (HxTAC). The HxTAC model is resistant to cardiac hypertrophy and the development of heart failure. The cardioprotective mechanisms identified in our HxTAC model include increased activation of HIF (hypoxia‐inducible factor)‐1α–mediated angiogenesis, attenuated induction of genes associated with pathological remodeling, and preserved metabolic gene expression as identified by RNA sequencing. Furthermore, LVPO decreased Tbx5 and increased Hsd11b1 mRNA expression under normoxic conditions, which was attenuated under hypoxic conditions and may induce additional hypoxia‐mediated cardioprotective effects. Analysis of samples from patients with advanced heart failure that demonstrated left ventricular assist device–mediated myocardial recovery revealed a similar expression pattern for TBX5 and HSD11B1 as observed in HxTAC hearts. Conclusions Hypoxia attenuates LVPO‐induced heart failure. Cardioprotective pathways identified in the HxTAC model might also contribute to cardiac recovery following left ventricular assist device support. These data highlight the potential of our novel HxTAC model to identify hypoxia‐mediated cardioprotective mechanisms and therapeutic targets that attenuate LVPO‐induced heart failure and mediate cardiac recovery following mechanical circulatory support

    The RNA editor ADAR2 promotes immune cell trafficking by enhancing endothelial responses to interleukin-6 during sterile inflammation

    No full text
    Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury

    The RNA editor ADAR2 promotes immune cell trafficking by enhancing endothelial responses to interleukin-6 during sterile inflammation

    No full text
    : Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury
    corecore