9 research outputs found

    Prevalence and risk factors for high-risk human papillomavirus infection among women from three southern geopolitical zones of Nigeria

    Get PDF
    IntroductionHuman Papillomavirus (HPV) infection is a risk factor for cervical cancer, the fourth most common cancer among women globally. Its burden is the highest in sub-Saharan Africa, with over 90% mortality. Interventions may fail without evidence-based data on stratified prevalence and risk factors among most at-risk women across Nigeria.MethodsA cross-sectional comparative study, with participants recruited from the Nigerian Institute of Medical Research’s Clinics, NGO outreaches, a cancer screening centre and a university teaching hospital. Questionnaires were self-administered. Trained medics performed sampling at healthcare facilities, and self-sampling was used at outreaches.ResultsNine hundred eighty-five study participants were recruited. About 37% and 27% of the women knew about HPV and its vaccines, respectively, but only 6% confirmed vaccination with HPV vaccines. HPV prevalence was highest among women with unknown marital status (35.9%), single women (33.8%), widowed/divorced/separated women (30.3%), and married/cohabiting women (19.6%). HPV infection was significantly higher among women who take alcohol (odds=1.7 [95% CI: 1.2-2.4]) and women who smoke (odds=2.6 [95% CI: 1.4 - 4.6]. HPV strains detected included HPV16 (1.3%), HPV18 (1.5%), Low Risk (0.2%) and Other High-Risk groups (19.7%).ConclusionThe inverse relationship between prevalence and education suggests interventions improving awareness and prevention would be impactful. Such interventions could also target HIV-positive women, women presenting with sexually-transmitted infections, who smoke and frequently drink alcohol

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Molecular surveillance of arboviruses in Nigeria

    No full text
    Abstract Arboviral infections are fast becoming a global public health concern as a result of its high fatality rate and sporadic spread. From the outbreak of Zika virus in the Americas, the endemicity of Yellow fever in West Africa and South America, outbreaks of West Nile virus in South Africa to the year-round and national risk of Dengue fever in Mainland China and India. The war against emerging and re-emerging viral infection could probably lead to the next pandemic. To be above the pending possible arboviral pandemic, consistent surveillance of these pathogens is necessary in every society. This study was aimed at conducting a surveillance for Yellow fever virus, Zika virus, Chikungunya virus, Dengue virus and Rift Valley fever virus in four states in Nigeria using molecular techniques. A cross-sectional study involving 1600 blood samples collected from febrile patients in Lagos, Kwara, Ondo and Delta States between 2018 and 2021 was conducted using Real time polymerase chain reaction for detection of the pathogens. Extraction and purification of viral RNA were done using Qiagen Viral RNA Mini Kit. Samples were analyzed using One Step PrimeScript III RT-PCR mix (Takara Bio) alongside optimized primers and probes designed in-house. Positive samples were sequenced on MinION platform (Nanopore technologies). Bioinformatic and phylogenetic analysis were performed with DNASTAR Lasergene 17.3. All the RNA extracted from samples collected from the four states were negative for ZIKV RNA, RVFV RNA, CHIKV RNA and DENV RNA. However, twelve of the samples (2%) tested positive for YFV RNA. Three full genomes of sizes 10,751 bp, 10,500 bp and 10,715 bp were generated and deposited in GenBank with accession numbers: ON323052, ON323053 and ON323054 respectively. Phylogenetic analysis shows clustering within lineage 3 of West African genotype. This result shows an active spread of Yellow fever in Delta State, Nigeria. However, there is no emergence of a new genotype There is a need for an intense surveillance of Yellow fever virus in Nigeria to avert a major outbreak

    Low level SARS-CoV-2 RNA detected in plasma samples from a cohort of Nigerians: Implications for blood transfusion.

    No full text
    The present global pandemic triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has lingered for over a year in its devastating effects. Diagnosis of coronavirus disease 2019 (COVID-19) is currently established with a polymerase chain reaction (PCR) test by means of oropharyngeal-, nasopharyngeal-, anal-swabs, sputum and blood plasma. However, oral and nasal swabs are more commonly used. This study, therefore, assessed sensitivity and specificity of plasma as a diagnostic in comparison with a combination of oral and nasal swab samples, and the implications for blood transfusion. Oropharyngeal (OP) and nasopharyngeal (NP) swab samples were obtained from 125 individuals suspected to have COVID-19 and stored in viral transport medium (VTM) tubes. Ten millilitres of blood samples in EDTA were also obtained by venepuncture and spun to obtain plasma. Viral RNA was obtained from both swabs and plasma by manual extraction with Qiagen QIAamp viral RNA Mini Kit. Detection was done using a real time fluorescent RT-qPCR BGI kit, on a QuantStudio 3 real-time PCR instrument. Average age of study participants was 41 years, with 74 (59.2%) being male. Out of the 125 individuals tested for COVID-19, 75 (60%) were positive by OP/NP swab. However, only 6 (4.8%) had a positive plasma result for COVID-19 with median Ct value of 32.4. Sensitivity and specificity of RT-PCR SARS-CoV-2 test using plasma was 8% and 100% respectively. There was no false positive recorded, but 69 (55.2%) false negatives were obtained by plasma. SARS-CoV-2 viral RNA was detected, albeit low (4.8%) in plasma. Plasma is likely not a suitable biological sample to diagnose acute SARS-CoV-2 infection. The implication of transfusing blood in this era of COVID-19 needs further investigations
    corecore