293 research outputs found

    EEOC v. DDZ, Inc., d/b/a, DDZ Ca, Inc.

    Get PDF

    EEOC v. River View Coal, LLC

    Get PDF

    Examining Gender Equity in Newspaper Coverage of West-Central Ohio High School Basketball Games

    Get PDF
    Across eight high school basketball seasons between 2000 and 2010, we investigated the coverage of over 300 high school basketball games and compared the quantity of coverage allotted to boys’ and girls’ teams within two west-central Ohio newspapers.   Unlike previous investigations on media coverage of high school sports, we restricted our sample to coverage of actual games and did not include feature articles about individual athletes, coaches, or booster clubs, and we determined article length by counting the number of words used in each article.   We found that boys’ games received two to three times the length of coverage of girls’ games.   Media coverage of girls’ games was also less likely to include a photograph and tended to begin lower on the sports page.   We discuss the potential implications of ignoring girls’ high school athletics within community media.

    Spatiotemporal dynamics of multiple shear-banding events for viscoelastic micellar fluids in cone-plate shearing flows

    Get PDF
    We characterize the transient response of semi-dilute wormlike micellar solutions under an imposed steady shear flow in a cone-plate geometry. By combining conventional rheometry with 2-D Particle Image Velocimetry (PIV), we can simultaneously correlate the temporal stress response with time-resolved velocimetric measurements. By imposing a well defined shear history protocol, consisting of a stepped shear flow sweep, we explore both the linear and nonlinear responses of two surfactant solutions: cetylpiridinium chloride (CPyCl) and sodium salicylate (NaSal) mixtures at concentrations of [66:40] mM and [100:60] mM, respectively. The transient stress signal of the more dilute solution relaxes to its equilibrium value very fast and the corresponding velocity profiles remain linear, even in the strongly shear-thinning regime. The more concentrated solution also exhibits linear velocity profiles at small shear rates. At large enough shear rates, typically larger than the inverse of the relaxation time of the fluid, the flow field reorganizes giving rise to strongly shear-banded velocity profiles. These are composed of an odd number of shear bands with low-shear-rate bands adjacent to both gap boundaries. In the non-linear regime long transients (much longer than the relaxation time of the fluid) are observed in the transient stress response before the fluid reaches a final, fully-developed state. The temporal evolution in the shear stress can be correlated with the spatiotemporal dynamics of the multiple shear-banded structure measured using RheoPIV. In particular our experiments show the onset of elastic instabilities in the flow which are characterized by the presence of multiple shear bands that evolve and rearrange in time resulting in a slow increase in the average torque acting on the rotating fixture

    Quantitative polarized light microscopy of human cochlear sections

    Get PDF
    Dysfunction of the inner ear is the most common cause of sensorineural hearing loss, which is the most common sensory deficit worldwide. Conventional imaging modalities are unable to depict the microanatomy of the human inner ear, hence the need to explore novel imaging modalities. We provide the first characterization of the polarization dependent optical properties of human cochlear sections using quantitative polarized light microscopy (qPLM). Eight pediatric cadaveric cochlear sections, aged 0 (term) to 24 months, were selected from the US National Temporal Bone Registry, imaged with qPLM and analyzed using Image J. Retardance of the bony otic capsule and basilar membrane were substantially higher than that of the stria vascularis, spiral ganglion neurons, organ of Corti and spiral ligament across the half turns of the spiraling cochlea. qPLM provides quantitative information about the human inner ear, and awaits future exploration in vivo

    Utilizing Dynamic Tensiometry to Quantify Contact Angle Hysteresis and Wetting State Transitions on Nonwetting Surfaces

    Get PDF
    Goniometric techniques traditionally quantify two parameters, the advancing and receding contact angles, that are useful for characterizing the wetting properties of a solid surface; however, dynamic tensiometry, which measures changes in the net force on a surface during the repeated immersion and emersion of a solid into a probe liquid, can provide further insight into the wetting properties of a surface. We detail a framework for analyzing tensiometric results that allows for the determination of wetting hysteresis, wetting state transitions, and characteristic topographical length scales on textured, nonwetting surfaces, in addition to the more traditional measurement of apparent advancing and receding contact angles. Fluorodecyl POSS, a low-surface-energy material, was blended with commercially available poly(methyl methacrylate) (PMMA) and then dip- or spray-coated onto glass substrates. These surfaces were probed with a variety of liquids to illustrate the effects of probe liquid surface tension, solid surface chemistry, and surface texture on the apparent contact angles and wetting hysteresis of nonwetting surfaces. Woven meshes were then used as model structured substrates to add a second, larger length scale for the surface texture. When immersed into a probe liquid, these spray-coated mesh surfaces can form a metastable, solid–liquid–air interface on the largest length scale of surface texture. The increasing hydrostatic pressure associated with progressively greater immersion depths disrupts this metastable, composite interface and forces penetration of the probe liquid into the mesh structure. This transition is marked by a sudden change in the wetting hysteresis, which can be systematically probed using spray-coated, woven meshes of varying wire radius and spacing. We also show that dynamic tensiometry can accurately and quantitatively characterize topographical length scales that are present on microtextured surfaces.United States. Air Force Office of Scientific Research (W 911NF-07-D-0004

    Visualization of microscale particle focusing in diluted and whole blood using particle trajectory analysis

    Get PDF
    Inertial microfluidics has demonstrated the potential to provide a rich range of capabilities to manipulate biological fluids and particles to address various challenges in biomedical science and clinical medicine. Various microchannel geometries have been used to study the inertial focusing behavior of particles suspended in simple buffer solutions or in highly diluted blood. One aspect of inertial focusing that has not been studied is how particles suspended in whole or minimally diluted blood respond to inertial forces in microchannels. The utility of imaging techniques (i.e., high-speed bright-field imaging and long exposure fluorescence (streak) imaging) primarily used to observe particle focusing in microchannels is limited in complex fluids such as whole blood due to interference from the large numbers of red blood cells (RBCs). In this study, we used particle trajectory analysis (PTA) to observe the inertial focusing behavior of polystyrene beads, white blood cells, and PC-3 prostate cancer cells in physiological saline and blood. Identification of in-focus (fluorescently labeled) particles was achieved at mean particle velocities of up to 1.85 m s[superscript −1]. Quantitative measurements of in-focus particles were used to construct intensity maps of particle frequency in the channel cross-section and scatter plots of particle centroid coordinates vs. particle diameter. PC-3 cells spiked into whole blood (HCT = 45%) demonstrated a novel focusing mode not observed in physiological saline or diluted blood. PTA can be used as an experimental frame of reference for understanding the physical basis of inertial lift forces in whole blood and discover inertial focusing modes that can be used to enable particle separation in whole blood

    Solution spraying of poly(methyl methacrylate) blends to fabricate microtextured, superoleophobic surfaces

    Get PDF
    We describe a simple technique to prepare superhydrophobic and superoleophobic microtextured surfaces by spray coating a blend of poly(methyl methacrylate) (PMMA) and the low surface energy molecule 1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS, γ[subscript sv] ≈ 10 mN/m) using an air brush with a pressurized nitrogen stream. Scanning electron micrographs show the formation of microtextured surfaces possessing re-entrant curvature; a critical feature for obtaining liquid repellency with low surface tension liquids. The surface morphology can be tuned systematically from a corpuscular or spherical microstructure to a beads-on-string structure and finally to bundled fibers by controlling the solution concentration and molecular weight of the sprayed polymer. The oleophobicity of the resulting structures is characterized by advancing and receding contact angle measurements with liquids of a range of surface tensions.United States. Army Research Office (Contract W911NF-07-D-0004)Air Force Research Laboratory (Wright-Patterson Air Force Base, Ohio). Propulsion DirectorateUnited States. Air Force Office of Scientific Researc

    Microfluidic extensional rheometry using a hyperbolic contraction geometry

    Get PDF
    Microfluidic devices are ideally suited for the study of complex fluids undergoing large deformation rates in the absence of inertial complications. In particular, a microfluidic contraction geometry can be utilized to characterize the material response of complex fluids in an extensionally-dominated flow, but the mixed nature of the flow kinematics makes quantitative measurements of material functions such as the true extensional viscosity challenging. In this paper, we introduce the ‘extensional viscometer-rheometer-on-a-chip’ (EVROC), which is a hyperbolically-shaped contraction-expansion geometry fabricated using microfluidic technology for characterizing the importance of viscoelastic effects in an extensionally-dominated flow at large extension rates (λ[. over ε][subscript a] ≫ 1, where λ is the characteristic relaxation time, or for many industrial processes . over ε][subscript a] ≫ 1 s[superscript −1]). We combine measurements of the flow kinematics, the mechanical pressure drop across the contraction and spatially-resolved flow-induced birefringence to study a number of model rheological fluids, as well as several representative liquid consumer products, in order to assess the utility of EVROC as an extensional viscosity indexer.National Science Foundation (U.S.). Graduate Research FellowshipUnited States. National Aeronautics and Space Administration (Microgravity Fluid Sciences Grant NNX09AV99G)European Commission. Marie Curie Actions (FP7-PEOPLE-2011-IIF Grant 298220
    • …
    corecore