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ABSTRACT  

We describe a simple technique to prepare superhydrophobic and superoleophobic micro-textured 

surfaces by spray coating a blend of poly(methyl methacrylate) (PMMA) and the low surface 

energy molecule 1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric silsesquioxane 

(fluorodecyl POSS, γsv ≈ 10 mN/m) using an air brush with a pressurized nitrogen stream. Scanning 

electron micrographs show the formation of micro-textured surfaces possessing re-entrant 

curvature; a critical feature for obtaining liquid repellency with low surface tension liquids. The 

surface morphology can be tuned systematically from a corpuscular or spherical microstructure to a 

beads-on-string structure and finally to bundled fibers by controlling the solution concentration and 

molecular weight of the sprayed polymer. The oleophobicity of the resulting structures is 

characterized by advancing and receding contact angle measurements with liquids of a range of 

surface tensions.  
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I. Introduction 

 

The production of micrometer and sub-micrometer sized nonwoven meshes/mats, coupled with the 

ability to tailor the morphological properties, is of interest in a number of applications including 

sensors, filtration, drug release, tissue engineering scaffolds, and liquid repellent fabrics [1-5]. 

Nonwoven fabrics and filter meshes are produced primarily by melt spinning, melt blowing and 

electrospinning processes. In melt spinning, a polymer melt is extruded through a spinneret and is 

taken up at a higher velocity downstream by a draw roll, and the resulting tensile stress draws the 

melt into fibers of average diameter from 2-10 μm at high production rates [6, 7]. Melt blowing is a 

modification of this process in which the extruded molten polymer is drawn at higher temperatures 

by an external jet of hot air resulting in fibers of 0.5-2 μm [8]. In contrast, electrospinning involves 

the application of a strong electrostatic field to accelerate a polymer solution jet at room 

temperatures, again producing very fine (submicron) fibers. The electrospinning process is limited 

by the slow rate of fiber production, and it requires adequate conductivity of the polymer jet. The 

need for a high voltage source adds to the cost and complexity of the process [3, 8, 9]. 

 

 Spray deposition is an alternative low cost technique to rapidly and conformally coat large areas on 

a variety of substrates. Medeiros et al [10] developed a “solution blow spinning” technique to 

produce fibers with diameters of 1μm and smaller from a polymer solution by using a syringe pump 

to deliver the solution through a nozzle into a high velocity gas flow. We describe a similar simple 

spraying technique to fabricate various microtextured surfaces from a polymer solution containing 

a perfluorinated dispersant, with the ability to control the morphology from fibers to beads-on-

string and corpuscular structures. The incorporation of the low surface energy 1H,1H,2H,2H-

heptadecafluorodecyl polyhedral oligomeric silsesquioxane (fluorodecyl POSS) cage molecule in 

the polymer solution confers these microtextured surfaces with significantly enhanced liquid 

repellent properties. 

 

The fabrication of surfaces and coating techniques which promote low surface tension liquid 

repellency have a number of potential applications, including fabrics with resistance to wetting by 

oils, surface coatings for reducing biofouling or fluid frictional drag and separation of oil/water 
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dispersions. Superhydrophobic surfaces - which exhibit a contact angle of * 150   and low 

contact angle hysteresis with water – have been prepared by a number of techniques including 

lithography [11], sol-gel processing [12], electrospinning [13], electrodeposition [14] and chemical 

vapor deposition [15]. Similar techniques that enable the preparation of more complex textured 

surfaces with the locally re-entrant topography needed to promote superoleophobic behavior when 

in contact with low surface tension liquids have also been reported [16-25]. These techniques result 

in a low energy micro-patterned re-entrant surface that can support the composite air/liquid 

interface characteristic of a super-repellent surface, but are usually expensive, involve multiple 

processing steps or are difficult to scale up to coat large substrate areas. There is a need to develop 

processing techniques that enable preparation of robust liquid-repellent surfaces using a simple, 

rapid and scalable process. A few nanocomposite spray coating methods to produce 

superhydrophobic surfaces have been reported [26-30]. Steele et al [31]  have described a 

technique to fabricate superoleophobic surfaces by spray casting ZnO nanoparticles blended with a 

waterborne perfluroacrylic polymer emulsion using volatile cosolvents followed by curing. In this 

article, we present an alternate technique to fabricate superoleophobic surfaces in a single step 

process by solution spraying of polymethyl methacrylate (PMMA) and fluorodecyl POSS blends 

dissolved in the hydrochlorofluorocarbon solvent Asahiklin AK-225, under a pressurized nitrogen 

stream.  

  

The wettability of liquids on solid surfaces is governed by the chemical composition of the surface 

as well as the topographic texture and roughness at the micro/nano-length scales [32-35]. For a 

smooth homogenous surface with an equilibrium contact angle θE, the presence of surface 

roughness is known to influence the wettability by two alternative mechanisms; in the Wenzel 

model [36], the roughness (r) increases the surface area of the wetted solid in contact with the 

liquid drop and influences the observed contact angle (θ
*
) according to the equation *cos cosr  . 

By contrast, in the Cassie-Baxter [37] model, pockets of air are trapped between the liquid drop and 

the solid substrate and this modifies the apparent contact angle through an expression of the form 

 
*cos cos 1s E sr      (1) 

where r  is the roughness of the wetted area, s  is the area fraction of the liquid-air interface 

occluded by the solid texture, and sr  is the fraction of the solid substrate in contact with the liquid 

[38]. A thermodynamic free energy analysis for a specific liquid on a textured solid surface can be 

used to predict which of these two possible states is the equilibrium wetting state [38, 39]. For 

liquids with low surface tensions the local surface curvature and topography of the surface texture 
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has been shown to be a crucial parameter in supporting metastable Cassie-Baxter states and 

enabling the rational design of oleophobic surfaces [17, 18, 22, 23]. 

 

II. Materials and Methods 

 

Low surface energy fluorodecyl POSS molecules (γsv ≈ 10 mN/m), whose synthesis technique has 

been previously reported [40], were mixed with PMMA to form solutions of various concentrations 

using the commercially available hydrofluorocarbon solvent Asahiklin AK-225 (Asahi Glass 

Company, bp: 54° C), which consists of 3,3-dichloro-1,1,1,2,2-pentafluoropropane (HCFC-225ca) 

and 1,3-dichloro-1,1,1,2,3-pentafluoropropane (HCFC-225cb). To investigate the roles of chain 

length and polydispersity on the textures produced by the spraying process, a number of different 

PMMA samples have been studied. Each sample used to prepare the solution was first 

characterized using Gel Permeation Chromatography (GPC), and the corresponding molecular 

weights and polydispersity are summarized in Table 1.  In particular, two different molecular 

weight samples of polydisperse PMMA (B1,B2; Scientific Polymer Products) have been studied, 

and characterization with GPC showed these have a weight averaged molecular weight (Mw) and 

polydispersity index (PDI) of B1: Mw=102,000 g/mol, PDI=1.56  and  B2: Mw=593,000 g/mol, 

PDI=2.69 respectively. These two polydisperse samples are contrasted with a range of 

monodisperse PMMA fractions (N1,N2,N3; Pressure Chemical Company, N4; Sigma-Aldrich) 

which were used to prepare a series of model solutions that enable us to characterize the role of 

polymer molecular weight on sprayed surface morphology. In Figure 1, we show the GPC curves 

using DMF as the solvent of four different narrow PMMA standards (N1: Mw=124,000 g/mol, 

PDI=1.04; N2: Mw=272,000 g/mol, PDI=1.11; N3: Mw=761,000 g/mol, PDI=1.13; N4: 

Mw=2,276,000 g/mol, PDI=1.08), along with the broad polydisperse samples (B1,B2). The 

molecular weight distributions of the PMMA standards are observed to be fairly monodisperse as 

expected with PDI < 1.2 for all samples. The high molecular weight monodisperse PMMA sample 

(N4) was also used in supplemental experiments to determine sprayability at very low 

concentrations. 
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Table 1. The number average molecular weight ( nM ), weight average molecular weight ( wM ), the 

peak molecular weight ( pM ) and the polydispersity index ( PDI w nM M ) of the PMMA samples 

used in preparing solutions for spraying. 

PMMA 

samples 

 310nM   

(g/mol) 

 310wM 

(g/mol) 

 310pM   

(g/mol) 

PDI 

Mw/Mn 

B1 65 102 82 1.56 

B2 220 593 721 2.69 

N1 118 124 125 1.04 

N2 245 272  247 1.11 

N3 565 761  605 1.13 

N4 2117 2276 2580 1.08 
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Figure 1. GPC curves for PMMA samples dissolved in dimethylformamide showing the 

normalized differential molecular weight distribution  ( ) logdW M d M  against the molecular 

weight  M . Four PMMA standards with narrow distributions and low polydispersity 

(N1,N2,N3,N4) are used to prepare solutions for spraying along with two broad PMMA samples 

(B1,B2). 

  

An air brush (McMaster-Carr) with a nozzle diameter of 0.75 mm was connected to a compressed 

nitrogen tank (pressure P=170 kPa) to spray coat the polymer solution at a distance of 

20 to 30 cml  onto the substrate (Figure 2). It was observed that the variation of the spraying 

distance within this range did not have a significant effect on the microtexture obtained, and we 

focus in this article on a single spraying distance of 25 cml  . The air brush was held fixed during 

the spraying process. The diameter covered by the conical spray jet at the substrate over the 

duration of the spraying was ~ 7 cm in diameter, while the size of the silicon wafer was 2 cm x 2 

cm. 

 

Contact angle measurements to characterize the surface wettability were performed using a VCA 

2000 (AST, Inc.) and a Rame-Hart Model 590 goniometer. The advancing  *

adv  and receding  

 *

rec  contact angles were measured via the sessile drop technique upon adding and removing a 

total volume ~ 10-15 µL of each liquid, forming a drop with maximum diameter of ~ 2.5 mm, 
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averaged over different locations on the coated substrate. The sliding angles were measured 

independently by tilting the stage until incipient motion of the droplet was detected. A JSM-6060 

Scanning Electron Microscope (JEOL) was used to characterize the surface morphology of each 

sprayed texture, sputter-coated with gold, under an operating voltage of 5kV. Energy-Dispersive X-

ray Spectroscopy (EDX) was performed using a XL30 FEG Enviromental Scanning Electron 

Microscope (FEI/Philips). The shear viscosities of the polymer/fluoroPOSS solutions were 

measured with an AR-G2 rheometer (TA Instruments) using a double-gap couette geometry. 

 

 

Figure 2. Schematic of spray apparatus and the chemical structure of PMMA (A) and the 

FluoroPOSS cage molecule (B, R = -CH2-CH2-(CF2)7-CF3) sprayed at a distance l = 25cm and 

pressure P = 170 kPa under a constant temperature and a range of relative humidity (T = 21.6  °C, 

RH: 20-60 %). 

 

 

III. Results and Discussion 

The solution concentration and molecular weight of the dissolved polymer are critical in controlling 

the morphological characteristics of the micro-textured surfaces generated using this simple 

spraying process. To demonstrate this, we use three different POSS/PMMA solutions (B2; 

Mw=593k, PDI=2.69) with solute concentrations (15, 25 and 50 mg/ml) at a fixed fraction of 50 

wt% flurodecyl POSS, and the duration of spraying was controlled to ensure that the total mass of 

the polymer blend delivered to each surface remained constant. At relatively low solute 

concentrations (15 mg/ml), the silicon substrate is completely covered by a corpuscular layer of 

spherical microbeads (~ 20 µm diameter). At a higher solute concentration of 25 mg/ml, a 

transition to a beads-on-string morphology is seen with individual fibrous strands of diameter < 1 
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µm and beads of diameter ranging from 20 µm – 50 µm. At higher solute concentrations (50 

mg/ml) a dense fibrous mesh is produced, with individual strands forming bundles of locally 

oriented fibers. The texture composed of corpuscular structures was found to exhibit slightly higher 

advancing and receding contact angles when compared to the bundled fibers. This is consistent 

with previous work by Ma et al [41] and Tuteja et al [23] who report higher contact angles for 

bead-like electrospun surfaces when compared with bead free electrospun surfaces of fibers. 

 

 

Figure 3 (a) Scanning electron microscope images of silicon surfaces sprayed with 50/50 wt% 

PMMA/flurodecyl POSS blends (B2; Mw=593k, PDI=2.69) of differing solute concentrations as 

indicated. (b) Droplets of water (V~ 15 μl) on each of the morphologies with corresponding values 

of apparent advancing (
*

adv ) and receding (
*

rec ) contact angles. 

 

In the electrospinning process, the relative humidity of the atmosphere is an important parameter 

that can influence the fine topographic structure via the formation of porous surface features at 

large relative humidities (RH > 30%) [42]. In an analogous manner, SEM micrographs of 

individual spherical microbeads obtained in our spraying process at high relative humidities  

( 50%RH  ) reveal the existence of nanoporous surface features (Figure 4a). While the possible 
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mechanisms leading to the formation of these nanopores are complex [42], the nanoporous features 

serve to reduce the solid/liquid fraction (ϕs) and contribute to an additional scale of roughness, 

which may also serve to lower contact angle hysteresis [43]. At lower relative humidities  

( 20%RH  ), a fraction of the corpuscular microstructures are collapsed or shrunken (Figure 4b). 

However the regions containing these collapsed structures do not seem to measurably affect the 

overall non-wetting properties. The apparent advancing and receding contact angles with water 

were measured to be 
* *,160 158adv rec     at 50%RH  , and 

* *,160 159adv rec    at 20%RH 

. 

 

Figure 4. SEM images of individual corpuscular microtextures (B2; 50/50 POSS/PMMA blend; 

15mg/ml) at (a) RH=51.3 %, 
* *,160 158adv rec     ; (b) RH=23.7 %, 

* *,160 159adv rec    . 
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Figure 5. (a-c) SEM images of surface structures obtained upon spraying a 50/50 POSS/PMMA 

blend at 25 mg/ml and a working distance of 25 cm using low polydispersity PMMA standards 

(N1,N2,N3). The images show a transition from a sparse coverage (N1; Mw~124k g/mol), to a 

corpuscular structure (N2; Mw~272k g/mol), and finally to a beads on string structure (N3; 

Mw~761k g/mol) with increasing molecular weight. (d-f) The corresponding energy-dispersive X-

ray spectroscopy (EDX) elemental map showing the spatial distribution of elemental fluorine. The 

fractional area coverage of fluorine, calculated from the pixel intensity of the EDX images, is 0.25, 

0.39 and 0.62 in figures (d-f) respectively. 

 

To investigate the impact of increasing molecular weight (Mw) of PMMA on the obtained surface 

texture, a series of monodisperse PMMA (PDI < 1.2)/fluorodecyl POSS 50/50 blends were sprayed 

at a constant solute concentration of 25 mg/ml at a distance of 25 cm and under a pressure of 170 

kPa. Increasing Mw at this specific fixed concentration of polymer results in a transition from a 

corpuscular morphology (Mw=272,000 g/mol) to a beads-on-string morphology (Mw=761,000 

g/mol), as seen in Figure 5a-c. Energy-dispersive X-ray spectroscopy (EDX) was simultaneously 

performed to determine the spatial distribution of elemental fluorine (Figure 5d-f) which 

corresponds to the distribution of flurodecyl POSS on the sprayed surface, averaged over a 

penentration depth of ~ 1 m . An estimate of the fractional area coverage of fluorine is obtained 
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from the EDX image as a ratio of the number of pixels indicating the presence of fluorine to the 

total number of pixels. At a low molecular weight (Mw=124,000 g/mol) the low viscosity of the 

solution results in insufficient surface coverage of the sprayed coating (Figure 5a) resulting in 

apparent contact angles that are lower than those obtained on a flat-spin coated surface  124E
  

of the same polymer blend. As the molecular weight of the solute increases, the surface area 

coverage also increases. In Table 2 we summarize the relationship between the weight average 

molecular weight, the apparent contact angle, fluorine surface coverage and surface texture. The 

zero shear viscosities of the three blends are observed to increase with Mw as expected. The 

morphology of the surface systematically varies with increasing molecular weight and 

concentration, resulting ultimately in fiber formation, which is indicative of suppression of the 

break-up of the polymer jet during the spraying process. The specific morphological details, 

including the fraction of beads and fibers exhibited by the beads-on-string morphology, depend on 

features of the molecular weight distribution, and we are currently investigating this phenomenon. 

 

In the corresponding electrospinning process, Shenoy et al [44] have developed a correlation that 

helps rationalize fiber formation in electrospinning due to increases in polymer molecular weight 

and concentration in terms of chain entanglement for polymer solutions that are in the good solvent 

limit with concentrations in the semi-dilute regime well above the critical overlap concentration 

 *c c . In Figure 6a, we provide an analogous operating diagram for the spraying process 

described in the present work. This plot maps the various microtextures obtained by spraying 

solutions of different Mw and c onto regions of parameter space that are above and below the coil 

overlap concentration *c . The corresponding SEM micrographs are provided in the supplementary 

information (Figure A1). The behavior of PMMA in Asahiklin AK-225, a solvent containing 

isomers of dichloropentafluoropropane and used in the spraying experiments, has not been studied 

in detail. However, previous studies on the intrinsic viscosity behavior of PMMA show that CFCs 

and HCFCs act as good solvents [45]. In particular, the Mark-Houwink-Sakurada parameters 

experimentally evaluated for PMMA in 2,2,3,3-Tetrafluoropropanol by Hamori et al [46] 

 310 ml/g;7 0 79.2 .aK     are used in this study for the purpose of obtaining a theoretical 

estimate of the overlap concentration using the equation 
3/2

* 3/2 26 8w AN Rc M  [47]. Here AN  is 

Avogadro’s number and  2 2 2

02 wR lC M M   is the mean-square end-to-end distance of the 

polymer coils, with the characteristic ratio for PMMA given by 6.9C   and bond length 

101.54 10l m  [48]. The dependence of the Flory expansion factor   on the molecular weight is 
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obtained from the following expression      3 1/2/ aMK K      [49], and the value of 

4104.8 ml/gK

  for PMMA in a  -solvent was experimentally obtained by Fox [50], and is 

independent of temperature in the range of 30  to 70 CC  . For the series of fairly monodisperse 

PMMA samples (N1-N4) used in the spraying experiments, the molecular weight in the Mark-

Houwink-Sakurada expression can be taken to be wM M . Thus, the final expression for the 

estimate of the critical overlap concentration *c  can be written in terms of the weight-averaged 

molecular weight as: 

  5* 0.7910  mgM /m8.6 l9 wc   (2)  

The dotted line in Figure 6a corresponding to equation (2) represents the predicted dependence of 

the overlap concentration (c
*
) on molecular weight. The circles denote the morphology observed 

upon spraying pure PMMA (Samples N1-N4) in Asahiklin at a specific concentration and 

molecular weight. For moderate molecular weights (Mw<10
6 

g/mol), a transition from corpuscular 

to fiber-containing structures is observed for */ 1c c  , indicating the key role of chain overlap in 

stabilizing the fiber formation. At very high molecular weights (Sample N4 with Mw=2,276,000 

g/mol), the extensional viscosity of even a dilute solution ( */ 1c c  ) is large enough to stabilize the 

formation of submicron fibers [51, 52] for sufficiently long periods to enable the solvent to 

evaporate and the POSS/PMMA blend to solidfy as shown in Figure 6b. 
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Table 2. Numerical values of the molecular weights and polydispersity indices of the PMMA 

standards and the corresponding water contact angles and surface texture on the respective sprayed 

surfaces, along with the zero-shear viscosities of the corresponding polymer solution. The EDX 

fluorine intensity is calculated as the ratio of pixels in the EDX image indicating the presence of 

fluorine to the total number of pixels. 

Mw 

(g/mol) PDI  θ
*

adv  θ
*

rec  θE  Structure 

EDX Fluorine 

Intensity η (cP)  

124,000  1.04 38 37 124 Sparse 0.25 1.2 

272,000  1.11 159 157 124 Corpuscular 0.39 1.9 

761,000  1.13 159 158 124 Beads on string 0.62 4 

 

 

Figure 6.(a) Operating diagram for solution spraying of pure PMMA structures, showing the 

variation of the observed morphologies upon increasing the concentration of polymer solution for 

various molecular weights (Mw). The dotted line corresponds to equation (2), which describes the 

estimated semi-dilute overlap concentration (c
*
) for PMMA as a function of Mw.  (b) SEM image of 
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the fiber morphology upon spraying a dilute PMMA solution of c=6 mg/ml  */ 0.7c c   and very 

high molecular weight Mw=2,276,000 g/mol. 

 

 

 

Figure 7. Advancing (θ
*
adv) and receding (θ

*
rec) water contact angles on a silicon substrate spray 

coated with 50 mg/ml PMMA (B2; Mw=593,000 g/mol, PDI=2.69)/fluorodecyl POSS blends of 

varying POSS fraction. Inset: Drops of I-Water, II-Ethanol, III-Decane, IV-Rapeseed oil displaying 

superoleophobic behavior 

  

A potential application of these highly textured surfaces is the rapid and simple production of 

superomniphobic surfaces [23]. The weight fraction of fluorodecyl POSS in the POSS/PMMA 

blend is an important parameter in promoting the liquid repellency of the sprayed POSS/PMMA 

blends to low surface tension liquids. In Figure 7, we show the variation of the apparent water 

contact angles with POSS content on a fibrous surface prepared by spraying different weight 

fractions of a 50 mg/ml mixture of POSS/PMMA (B2; Mw = 593,000 g/mol, PDI = 2.69) for 15 

seconds. An increase in the weight fraction of fluorodecyl POSS in the solution increases both the 

apparent advancing (
*

adv ) and receding (
*

rec ) water contact angles on the resulting sprayed 

surfaces, asymptoting to a maximum value of 
* *  152 2 , 14 28adv rec        at 44.4 wt% 

fluorodecyl POSS, which is consistent with the previous work by Tuteja et. al [22] on electrospun 

POSS/PMMA surfaces. Concomitantly, the contact angle hysteresis (
* * *

adv rec   ) decreases as 
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the weight fraction of POSS increases, from * 39    at 0 wt% fluorodecyl POSS to * 4   at  

44.4 wt% fluorodecyl POSS. While the large value of contact angle hysteresis at low POSS 

fractions (<10 wt%) is indicative of a sticky hydrophobic surface [53], the low hysteresis at high 

weight fractions of fluorodecyl POSS indicates the existence of a Cassie-Baxter state. For 

fluorodecyl POSS fractions greater than 16 wt%, a superhydrophobic surface (with * 150   and 

* 5   ) is obtained. In the inset of Figure 7, the oleophobic or omniphobic behavior of the 

sprayed surface at 44.4 wt% fluorodecyl POSS is demonstrated and the spray-on surface coating 

repels a wide range of liquids. This omniphobicity is further explored in Figure 8, where we show 

the measured advancing and receding contact angles for a series of liquids over a particular 

corpuscular surface prepared by spraying a 50 wt% mixture of POSS/PMMA (B1; c = 50 mg/ml, 

Mw = 102,000 g/mol, PDI = 1.56) on a flat silicon substrate. The surface exhibits liquid repellency 

over a range of liquid surface tensions. The highest observed apparent contact angle (
*

adv ) with 

water (γlv = 72.8 mN/m) was 159
° 
with a corresponding contact angle hysteresis * 2   . A variety 

of low surface tension oils including dimethyl sulfoxide (γlv = 43 mN/m), rapeseed oil  

(γlv = 35.5mN/m), hexadecane (γlv = 27.5 mN/m) and decane (γlv = 23.8 mN/m) exhibit 

superoleophobic behavior with advancing contact angles in excess of 150
°
. However, as seen in 

Figure 8a, the contact angle hysteresis progressively increases for liquids with lower surface 

tensions as the droplets experience an increasing number of pinning events on the highly textured 

spray-coated surface [43]. The sliding angle ( ), defined here as the angle of the tilt stage at which 

the liquid drop rolls off the surface without leaving any residual trail, is measured at a constant drop 

volume of 10V l  for different liquids, and is shown in Figure 8b. The measured sliding angles 

are compared with the predicted values for the contact angle hysteresis calculated using the 

Extrand-Gent model [54-56] which can be written in the form  * *2
sin( ) cos coslv

rec adv

d

gV


  



 
  
 

. Here d corresponds to the diameter of the droplet at the triple phase contact line and V is the 

volume of the drop. The diameter of the triple phase contact line was directly measured from the 

computer image of the drop. The measured values of the sliding angle are larger than the predicted 

value evaluated from the Extrand-Gent model, as seen in Figure 8b. This is again indicative of 

pinning of the receding contact line on the local features of the microtextured surface [55]. The 

relatively large roll-off angle and high contact angle hysteresis for decane  

(
* 41 6 2, 371         ) can be attributed to a partial localized wetting of the surface 

suggesting the incipient transition to a fully wetted interface. Heptane (γlv = 20.1 mN/m) fully wets 

the surface resulting in a very low apparent contact angle  * *51  and 13 0adv rec     , marking 
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a complete transition to the Wenzel regime. The Cassie-Baxter state is metastable for many low 

surface tension liquids and a pressure perturbation might cause an irreversible transition into the 

fully wetted state [23]. In order to estimate the robustness against a pressure-induced wetting 

transition to the Wenzel state when water is the contacting liquid, a simple immersion test was 

conducted in which the substrate was immersed in a column of water. The substrate which was 

spray coated with a 44.4 wt% POSS/PMMA (B1; Mw = 102,000 g/mol, PDI = 1.56, c = 50 mg/ml) 

blend retained its non-wettability through the entire height of the column, which corresponds to a 

maximum static pressure of 4410 Pa (h=45 cm). The presence of a plastron film, a silvery mirror-

like reflecting interface due to a trapped layer of air verified the Cassie-Baxter composite interface. 

(See supplementary Information Figure A2)  
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Figure 8 (a) Measured values of the apparent advancing (θ
*
adv) and receding (θ

*
rec) contact angles 

with water (γlv = 72.8 mN/m), dimethyl sulfoxide (γlv = 43 mN/m), rapeseed oil (γlv = 35.5 mN/m), 

hexadecane (γlv = 27.5 mN/m), decane (γlv = 23.8 mN/m) and n-heptane (γlv = 20.1 mN/m) liquid 

drops of volume ~ 10 µl on a surface spray coated with 50/50 fluorodecyl POSS/PMMA  

(B1; PDI = 1.56, Mw = 102,000 g/mol). The dashed line represents the boundary of the super-

nonwetting regime. (b) The measured sliding angle ( ) is plotted against the predicted sliding 

value from the Extrand-Gent model evaluated using the corresponding values of θ
*
adv and θ

*
rec, 

represented by the solid line. 

 

The omniphobic behavior of the sprayed surfaces shown in Figures 7 and 8 is a consequence of a 

surface topography with pronounced re-entrant surface curvature [22] as evidenced from the 

scanning electron micrographs in Figure 3. The presence of re-entrant features, in the form of 

spherical microbeads and cylindrical fibers [57], allows the liquid-air interface to locally satisfy the 

Young equation at numerous points along the strongly curved substrate features, and this facilitates 

the existence of the Cassie-Baxter state for low surface tension liquids [23, 39, 58]. The different 

morphologies formed during the solution spraying technique (Figure 3), are nearly identical to 

structures obtained by electrospinning similar PMMA/fluorodecyl POSS solutions [23]. A clear 

advantage of the spraying technique is the ability to reproduce and tailor surface morphologies in 

the absence of the very strong electric field required for electrospinning.     
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The microstructures which are formed during the solution spraying process are randomly oriented 

over large length scales, and the average feature size sampled by a microliter scale liquid drop 

placed on one of these surfaces is not immediately apparent from existing micrographs such as 

Figure 3 or Figure 5. The influence of the surface texture of the sprayed surfaces on wettability can 

be characterized by using an appropriate measure of the surface texture captured in the Cassie-

Baxter equation (Eq. 1). This can be determined by regressing experimental contact angle 

measurements with the corresponding theoretical prediction. An idealized geometrical model for 

the corpuscular beads and fibrous mesh is used to characterize the randomly oriented surface 

geometry in terms of a single dimensionless feature spacing parameter (D
*
) [57, 59]. The fiber-

dominated geometries are approximated as an array of uniform cylinders of diameter 2R, which are 

spaced a distance 2D apart and the surfaces composed of corpuscular beads are modeled as 

hexagonally packed spheres of diameter 2R, with a spacing distance of 2D (Figure 9). For the 

cylindrical model, the Cassie-Baxter equation can then be written as [23, 59-62] 

 *

*

1
cos 1 ( )cos sinE E E

D
            (3) 

where  *D R D R  ,   sinE Er     and 
*sins E D  . For the model of hexagonally 

packed spheres, the relevant Cassie-Baxter equation is [59]: 

 * 2

*

1
cos 1 (1 cos )

2 3
E

D


 

 
    

 
 (4) 

 where  
2* R D RD     , 

2cos(1 n2 si)E Er     and 2 *si 32ns E D   . For these model 

geometries, the fraction of the liquid in contact with the solid, sr  scales inversely with the 

spacing ratio D
*
. In Figure 9, we show a non-wetting diagram [34, 63] in which we represent the 

cosine of the apparent advancing (
*

adv ) contact angles measured with a series of liquids of varying 

surface tension as a function of the corresponding advancing contact angles ( adv ) measured on 

smooth spin-coated silicon wafer surfaces. The enhanced liquid repellency of the structured 

surfaces is apparent from the large (negative) values of 
*cos adv  that can be obtained even when the 

contact angle of the liquid on the corresponding flat surface is less than 90 . The effective or 

average value of spacing ratio *D  is calculated by fitting the simplified Cassie-Baxter equation for 

each data set and corresponding model, and we find * 6.1 0.5D   for the fibrous mesh and 

* 9.0 1.2D    for the corpuscular structures. The Cassie-Baxter states that sit in the fourth quadrant  

(
*2,  2A A       ) are inherently metastable to sufficiently large pressure perturbations  
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[23, 61]. As the surface tension of the wetting liquid is progressively decreased, the magnitude of 

the energy barrier between the Cassie-Baxter and Wenzel state decreases [58], and eventually a 

droplet of heptane (γlv=20.1 mN/m) transitions spontaneously to a fully wetted Wenzel state even 

under equilibrium/rest conditions for either of the textured surfaces. 

Prior to the wetting transition it is clear that the simple models given by Eq. (3), Eq. (4) can 

accurately capture the evolution in the apparent contact angle for the microtextured surfaces formed 

by spraying the polymer/POSS solutions, in agreement with earlier experiments performed using 

ideal dipcoated meshes [59]. The larger value of *D  obtained for the corpuscular surfaces reflect 

the lower fraction of solid substrate that is in wetted contact with the drop and the correspondingly 

higher value of the apparent contact angles that are obtained.  

 

Figure 9 (a) The cosine of the apparent advancing contact angle (θ
*
adv) measured on the 

corpuscular ( ) and fibrous ( ) sprayed surface plotted against the corresponding cosine of the 

advancing contact angle (θadv) on a homogenous smooth spin-coated surface. The contacting liquids 

used are water (γlv = 72.8 mN/m), dimethyl sulfoxide (γlv = 43 mN/m), rapeseed oil (γl v =35.5 

mN/m), hexadecane (γl v = 27.5 mN/m), dodecane (γlv = 25.4 mN/m) and decane (γlv = 23.8 mN/m). 

The solid line represents the best fit for the Cassie-Baxter equation used to obtain estimates of the 

dimensionless geometrical spacing ratio  *D  that characterize the randomly textured surfaces. A 

transition to the Wenzel regime (represented by the arrow) is observed for a droplet of heptane (γlv 

= 20.1 mN/m). (b,c) Schematics of a system of hexagonally packed spheres used to model the 

corpuscular surface, and an array of cylinders used to model the fibrous surface. 
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As already mentioned above, the similarity of these structures to those produced by electrospinning 

[41] is noteworthy. Electrospinning is a process which has been used widely to fabricate textured 

surfaces and non-woven fabrics by accelerating the spinning of a thin jet of polymeric fluid via 

action of electrostatic forces [64]. The electrohydrodynamic instability of the slender fluid jet 

determines the surface morphologies obtained on the collector plate, and a beads-on-string or 

corpuscular structure is obtained when the elongational stresses in the jet are unable to fully 

suppress the Rayleigh instability mechanism of jet break-up [51]. The filament thinning and break 

up of viscoelastic fluid jets are governed by different physical processes involving inertio-capillary, 

viscous and elastic forces. The relative importance of these forces can be determined in terms of 

two dimensionless parameters defined as the ratios of the time scales characterizing each process 

[65, 66]. The Ohnesorge number (Oh) is defined as the ratio of the viscous time scale 0~ lvt l    

and the inertial or Rayleigh time scale [67] 
3~R lvlt    to give 

0R lvOh t t l    where 

0  is the zero shear viscosity and l  is the characteristic length scale of the flow, which is here taken 

to be the nozzle diameter. While the Ohnesorge number defined above provides an estimate of the 

role of viscous stresses, the relative importance of elastic stresses in stabilizing fiber production can 

be estimated from an intrinsic Deborah number [65], 
3 /~ lvlDe    , defined as a ratio of the 

polymer relaxation time scale ~pt   and the Rayleigh time scale Rt . A theoretical estimate of the 

longest relaxation time   can be obtained using the non-free draining limit of the Zimm theory for 

a flexible polymer chain dissolved in a good solvent using the expression 

   [ ]zimm w s A BM N k T  
 
[68], where 0.59 cPs   is the solvent viscosity, AN  is Avogadro’s 

number, Bk
 

is the Boltzmann constant, T is the absolute temperature, 

3 0.79] 10[ 7.2  ml/ga

wK MM   
 

is the intrinsic viscosity of the PMMA/hydrofluorocarbon 

solvent system taken from the Mark-Houwink-Sakurada expression determined by Hamori et al 

[46] and applied to the monodisperse PMMA samples dissolved in Asahiklin. In Table 3, we list 

the longest (Zimm) relaxation time, the Ohnesorge number (Oh) and the Deborah number (De) 

calculated for different fluorodecyl POSS/polymer solutions and the corresponding morphologies 

obtained. The longest estimated relaxation time for the PMMA/solvent system increases by over 

two orders of magnitude over the range of molecular weights used, from 1z s   for  

Mw=124,000 g/mol to 410z s   for Mw=2,276,000 g/mol, which coincides with the appearance 

of fibrous morphologies upon spraying. The uniformly low value of the Ohnesorge number 
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throughout the range of PMMA/solvent conditions studied in the present work signifies the 

negligible contribution of viscous stresses towards stabilizing fiber formation, which along with the 

significant increase in the relaxation time and Deborah number, indicate that the morphologies 

produced by simple solution spraying are due to increasing viscoelastic effects progressively 

retarding the jet break up phenomenon and promoting the formation of fibers.  

 

A dilute solution of very high molecular weight (N4; Mw=2,276,000 g/mol) and low PMMA 

concentration c=6mg/ml ( */ 0.7c c  ) was also observed to produce fibers upon spraying (Figure 

6b), indicating that it is not under coil overlap near equilibrium conditions per se that leads to these 

features but the increased elongational viscosity of very dilute polymer solution at high molecular 

weights which contributes to the suppression of jet break up during the spraying process. The 

critical role of the high Mw polymer in the suppression of jet break-up is also evidenced in Figure 

10, where we show the influence of adding a small fraction of high molecular weight PMMA to a 

non-spinnable solution of low Mw PMMA resulting in the formation of a fibrous morphology. A 

blend of 96% low Mw PMMA (B1; Mw=102,000 g/mol) and 4% high Mw PMMA (N4; 

Mw=2,276,000 g/mol) sprayed at a concentration of c=50 mg/ml is seen to produce fibrous 

structures, while a similar concentration (c/c
*
=0.75, c=45 mg/ml) of the pure low Mw PMMA 

produces corpuscular structures.  

 

Table 3 Values for the longest relaxation times obtained from the Zimm theory  zimm , and for the 

Ohnesorge  Oh  and Deborah  De  numbers that characterize the relative importance of viscous 

and elastic effects respectively, for fluorodecyl POSS/PMMA solutions of varying concentrations 

and molecular weights. 

 310wM   

(g/mol) 

*

c

c
 

 zimm s   Oh  De  Structure 

124  0.26 1.6 21.2 10  47.1 10  Sparse 

272  0.57 9.2 22.0 10  34.1 10  Corpuscular 

761  1.04 58 24.1 10  22.6 10  Beads on string 

2276 0.72 410 21.7 10  11.8 10  Fibers 
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Figure 10 SEM images of microstructures obtained on spraying (a) pure PMMA (B1; c/c
*
=0.75, 

c=45 mg/ml, Mw=102k g/mol) (b) blend of 4% high Mw PMMA (N4; Mw=2276k g/mol) + 96% low 

Mw PMMA (B1; Mw=102k g/mol) at a concentration c=50 mg/ml. The inset in the SEM images 

shows the GPC curves corresponding to the pure PMMA and the blend of high and low Mw PMMA 

respectively.  

 

IV. Conclusion 

A simple spraying technique that enables fabrication of microtextured surfaces from a polymer 

solution has been demonstrated. The surface morphology observed in SEM images ranged from 

randomly dispersed spherical microbeads or corpuscular structures to bundled fibers and can be 

controlled systematically by varying the solute concentration and the polymer molecular weight. 

Studies with a wide range of polymer molecular weights show that the critical concentration or coil 

overlap (c
*
) provides a good estimate of the critical conditions for the formation of fibrous 

microstructures, except at very high molecular weights when even dilute polymer solutions 

 *c c  are spinnable due to the high elongational viscosity of the dilute solution. The 

incorporation of the low surface energy 1H,1H,2H,2H-heptadecafluorodecyl polyhedral oligomeric 

silsesquioxane (fluorodecyl POSS) cage molecules confers the sprayed POSS/PMMA surface 

coatings with enhanced liquid repellency. The surface repellency was characterized by measuring 

the apparent advancing, receding and roll-off angles, and superomniphobic behavior was observed 

for liquids with a wide range of liquid surface tensions. Idealized geometrical models for the 

resulting textures were used to evaluate a characteristic dimensionless spacing ratio (D
*
) that 

parameterized the surface morphology obtained from the solution spraying process. The larger 

value of * 9.0 1.2D  
 
obtained for the corpuscular structures when compared to the bundled fibers  
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( * 6.1 0.5D   ) reflects the correspondingly higher values of apparent contact angle obtained on 

the corpuscular structures for a range of liquid surface tensions. 

A number of simple solution spinning and spraying techniques have recently been described for 

preparation of textured and hydrophobic surfaces [10, 30, 31]. The ability to control the 

morphology of the microtextures and the weight fraction of fluorodecyl POSS deposited on the 

surface using our solution spraying process enables us to systematically control the oleophobicity 

and contact angle hysteresis of the coating that is applied to a substrate. The simplicity of the 

solution spraying process used in the present study is particularly helpful in facilitating rapid and 

cheap production of omniphobic coatings that can be applied over a large area. The re-entrant 

topographic features of these textured coatings promote establishment of Cassie-Baxter states in 

which microscopic pockets of air are trapped within the micro-texture resulting in high contact 

angles, low roll off angles and low hysteresis. The resulting textured and omniphobic surfaces may 

ultimately find utility as simple coatings that can be applied over a wide area for reducing frictional 

drag, ice adhesion or biofouling. 
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