74 research outputs found
Casimir effect due to a single boundary as a manifestation of the Weyl problem
The Casimir self-energy of a boundary is ultraviolet-divergent. In many cases
the divergences can be eliminated by methods such as zeta-function
regularization or through physical arguments (ultraviolet transparency of the
boundary would provide a cutoff). Using the example of a massless scalar field
theory with a single Dirichlet boundary we explore the relationship between
such approaches, with the goal of better understanding the origin of the
divergences. We are guided by the insight due to Dowker and Kennedy (1978) and
Deutsch and Candelas (1979), that the divergences represent measurable effects
that can be interpreted with the aid of the theory of the asymptotic
distribution of eigenvalues of the Laplacian discussed by Weyl. In many cases
the Casimir self-energy is the sum of cutoff-dependent (Weyl) terms having
geometrical origin, and an "intrinsic" term that is independent of the cutoff.
The Weyl terms make a measurable contribution to the physical situation even
when regularization methods succeed in isolating the intrinsic part.
Regularization methods fail when the Weyl terms and intrinsic parts of the
Casimir effect cannot be clearly separated. Specifically, we demonstrate that
the Casimir self-energy of a smooth boundary in two dimensions is a sum of two
Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a
geometrical term that is independent of cutoff, and a non-geometrical intrinsic
term. As by-products we resolve the puzzle of the divergent Casimir force on a
ring and correct the sign of the coefficient of linear tension of the Dirichlet
line predicted in earlier treatments.Comment: 13 pages, 1 figure, minor changes to the text, extra references
added, version to be published in J. Phys.
Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups
We study the symmetries of generalized spacetimes and corresponding phase
spaces defined by Jordan algebras of degree three. The generic Jordan family of
formally real Jordan algebras of degree three describe extensions of the
Minkowskian spacetimes by an extra "dilatonic" coordinate, whose rotation,
Lorentz and conformal groups are SO(d-1), SO(d-1,1) XSO(1,1) and
SO(d,2)XSO(2,1), respectively. The generalized spacetimes described by simple
Jordan algebras of degree three correspond to extensions of Minkowskian
spacetimes in the critical dimensions (d=3,4,6,10) by a dilatonic and extra
(2,4,8,16) commuting spinorial coordinates, respectively. The Freudenthal
triple systems defined over these Jordan algebras describe conformally
covariant phase spaces. Following hep-th/0008063, we give a unified geometric
realization of the quasiconformal groups that act on their conformal phase
spaces extended by an extra "cocycle" coordinate. For the generic Jordan family
the quasiconformal groups are SO(d+2,4), whose minimal unitary realizations are
given. The minimal unitary representations of the quasiconformal groups F_4(4),
E_6(2), E_7(-5) and E_8(-24) of the simple Jordan family were given in our
earlier work hep-th/0409272.Comment: A typo in equation (37) corrected and missing titles of some
references added. Version to be published in JHEP. 38 pages, latex fil
- …