23 research outputs found

    Cluster Analysis of Symptoms Among Patients with Upper Extremity Musculoskeletal Disorders

    Get PDF
    Introduction Some musculoskeletal disorders of the upper extremity are not readily classified. The study objective was to determine if there were symptom patterns in self-identified repetitive strain injury (RSI) patients. Methods Members (nĀ =Ā 700) of the Dutch RSI Patients Association filled out a detailed symptom questionnaire. Factor analysis followed by cluster analysis grouped correlated symptoms. Results Eight clusters, based largely on symptom severity and quality were formulated. All but one cluster showed diffuse symptoms; the exception was characterized by bilateral symptoms of stiffness and aching pain in the shoulder/neck. Conclusions Case definitions which localize upper extremity musculoskeletal disorders to a specific anatomical area may be incomplete. Future clustering studies should rely on both signs and symptoms. Data could be collected from health care providers prospectively to determine the possible prognostic value of the identified clusters with respect to natural history, chronicity, and return to work

    Building kindergartners' number sense: A randomized controlled study.

    No full text

    Repurposing an EMG Biofeedback Device for Gait Rehabilitation: Development, Validity and Reliability

    No full text
    Gait impairment often limits physical activity and negatively impacts quality of life. EMG-Biofeedback (EMG-BFB), one of the more effective interventions for improving gait impairment, has been limited to laboratory use due to system costs and technical requirements, and has therefore not been tested on a larger scale. In our research, we aimed to develop and validate a cost-effective, commercially available EMG-BFB device for home- and community-based use. We began by repurposing mTriggerĀ® (mTrigger LLC, Newark, DE, USA), a cost-effective, portable EMG-BFB device, for gait application. This included developing features in the cellphone app such as step feedback, success rate, muscle activity calibration, and cloud integration. Next, we tested the validity and reliability of the mTrigger device in healthy adults by comparing it to a laboratory-grade EMG system. While wearing both devices, 32 adults walked overground and on a treadmill at four speeds (0.3, 0.6, 0.9, and 1.2 m/s). Statistical analysis revealed good to excellent testā€“retest reliability (r > 0.89) and good to excellent agreement in the detection of steps (ICC > 0.85) at all speeds between two systems for treadmill walking. Our results indicated that mTrigger compared favorably to a laboratory-grade EMG system in the ability to assess muscular activity and to provide biofeedback during walking in healthy adults

    Ankle strength deficits in a cohort of college athletes with chronic ankle instability

    No full text
    Context: Lateral ankle sprains commonly occur in an athletic population and can lead to chronic ankle instability. Objective: To compare ankle strength measurements in athletes who have mechanical laxity and report functional instability after a history of unilateral ankle sprains. Design: Retrospective cohort. Setting: Athletic Training Research Lab. Participants: A total of 165 National Collegiate Athletic Association Division I athletes, 97 males and 68 females, with history of unilateral ankle sprains participated. Main Outcome Measures: Functional ankle instability was determined by Cumberland Ankle Instability Tool scores and mechanical ankle instability by the participant having both anterior and inversion/eversion laxity. Peak torque strength measures, concentric and eccentric, in 2 velocities were measured. Results: Of the 165 participants, 24 subjects had both anterior and inversion/eversion laxity and 74 self-reported functional ankle instability on their injured ankle. The mechanical ankle instability group presented with significantly lower plantar flexion concentric strength at 30Ā°/s (139.7 [43.7] NĀ·m) (P = .01) and eversion concentric strength at 120Ā°/s (14.8 [5.3] NĀ·m) (P = .03) than the contralateral, uninjured ankle (166.3 [56.8] NĀ·m, 17.4 [6.2] NĀ·m, respectively). Conclusion: College athletes who present with mechanical laxity on a previously injured ankle exhibit plantar flexion and eversion strength deficits between ankles
    corecore