697 research outputs found

    The expanding toolkit of translating ribosome affinity purification

    Get PDF
    Translating ribosome affinity purification is a method initially developed for profiling mRNA from genetically defined cell types in complex tissues. It has been applied both to identify target molecules in cell types that are important for controlling a variety of behaviors in the brain, and to understand the molecular consequences on those cells due to experimental manipulations, ranging from drugs of abuse to disease-causing mutations. Since its inception, a variety of methodological advances are opening new avenues of investigation. These advances include a variety of new methods for targeting cells for translating ribosome affinity purification by features such as their projections or activity, additional tags and mouse reagents increasing the flexibility of the system, and new modifications of the method specifically focused on studying the regulation of translation. The latter includes methods to assess cell type-specific regulation of translation in specific subcellular compartments. Here, I provide a summary of these recent advances and resources, highlighting both new experimental opportunities and areas for future technical development.</jats:p

    Generation and characterization of a mouse line for monitoring translation in dopaminergic neurons

    Get PDF
    AbstractWe developed a mouse line targeting midbrain dopamine neurons for Translating Ribosome Affinity Purification(TRAP). Here, we briefly report on the basic characterization of this mouse line including confirmation of expression of the transgene in midbrain dopamine neurons and validation of its effectiveness in capturing mRNA from these cells. We also report a translational profile of these neurons which may be of use to investigators studying the gene expression of these cells. Finally, we have provided the line to Jackson Laboratories for distribution and use in future studies.</jats:p

    Following the Principles: Case Studies in Operations Other than War, 1945-1999

    Get PDF
    In the post-World War II-era, operations other than war (OOTW) were the types of conflict most commonly faced by the United States. This term for what had previously been called by such names as small wars and low intensity conflict was incorporated in the Army’s capstone manual, Field Manual (FM) 100-5, Operations, in 1993. Field Manual 100-5 also listed objective, unity of effort, legitimacy, perseverance, restraint, and security as the six principles of OOTW. An analysis of eight OOTWs that occurred between 1945 and 1999 indicates that the balanced application of these principles is a reliable predicator of the operation’s outcome and that there is a relationship among several of the principles themselves. These findings suggest the principles of OOTW are a useful planning tool for military commanders and staffs

    Maternal fluoxetine exposure alters cortical hemodynamic and calcium response of offspring to somatosensory stimuli

    Get PDF
    Epidemiological studies have found an increased incidence of neurodevelopmental disorders in populations prenatally exposed to selective serotonin reuptake inhibitors (SSRIs). Optical imaging provides a minimally invasive way to determine if perinatal SSRI exposure has long-term effects on cortical function. Herein we probed the functional neuroimaging effects of perinatal SSRI exposure in a fluoxetine (FLX)-exposed mouse model. While resting-state homotopic contralateral functional connectivity was unperturbed, the evoked cortical response to forepaw stimulation was altered in FLX mice. The stimulated cortex showed decreased activity for FLX versus controls, by both hemodynamic responses [oxyhemoglobin (Hb

    An exploratory study of student satisfaction of the Rowan University Recreation Center

    Get PDF
    The purpose of the study is to explore the extent of student satisfaction with the Rowan University Recreation Center. A convenience sample of 151 students who frequented the recreation center was used to determine students\u27 perceptions of the facility on a number of factors. The study showed that the recreation center rated higher than all other comparable student services both in importance to the student and satisfaction with the service provided. The recreation center was also very successful in terms of getting students involved, much more so than any other campus group or activity. The results showed that the recreation center was very important to those who use it, and they were also very satisfied and very involved leading to high rates of student satisfaction

    Fmrp targets or not: Long, highly brain-expressed genes tend to be implicated in autism and brain disorders

    Get PDF
    BACKGROUND: Many studies have demonstrated a robust statistical overlap between genes whose transcripts are reported as Fragile X Mental Retardation Protein (Fmrp)-binding targets and genes implicated in various psychiatric disorders, including autism. However, it is not clear how to interpret this overlap as the Fmrp protein itself is not considered to be central to all instances of these conditions. FINDINGS: We tested whether Fmrp binding may be a proxy for some other features of these transcripts. Reviewing recent literature on the cross-linking and immunoprecipitation (CLIP)-derived targets of Fmrp in the brain, and the literature on identifying genes thought to mediate autism and other psychiatric disorders, reveals that both appear to be disproportionately made up of highly brain-expressed genes. This suggests a parsimonious explanation—that the overlap between Fmrp targets and neuropsychiatric candidate genes might be secondary to simple features such as transcript length and robust expression in the brain. Indeed, reanalyzing Fmrp high-throughput sequencing of RNAs isolated by CLIP (HITS-CLIP) data suggests that approximately 60% of CLIP tag depth can be predicted by gene expression, coding sequence length, and transcript length. Furthermore, there is a statistically significant overlap between autism candidate genes and random samples of long, highly brain-expressed genes, whether they are Fmrp targets or not. CONCLUSIONS: Comparison of known Fmrp-binding targets to candidate gene lists should be informed by both of these features. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-015-0008-1) contains supplementary material, which is available to authorized users

    An inducible Cre mouse line to sparsely target nervous system cells, including Remak Schwann cells

    Get PDF
    Nerves of the peripheral nervous system contain two classes of Schwann cells: myelinating Schwann cells that ensheath large caliber axons and generate the myelin sheath, and Remak Schwann cells that surround smaller axons and do not myelinate. While tools exist for genetic targeting of Schwann cell precursors and myelinating Schwann cells, such reagents have been challenging to generate specifically for the Remak population, in part because many of the genes that mark this population in maturity are also robustly expressed in Schwann cell precursors. To circumvent this challenge, we utilized BAC transgenesis to generate a mouse line expressing a tamoxifen-inducible Cre under the control of a Remak-expressed gene promoter (Egr1). However, as Egr1 is also an activity dependent gene expressed by some neurons, we flanked this Cre by flippase (Flpe) recognition sites, and coinjected a BAC expressing Flpe under control of a pan-neuronal Snap25 promoter to excise the Cre transgene from these neuronal cells. Genotyping and inheritance demonstrate that the two BACs co-integrated into a single locus, facilitating maintenance of the line. Anatomical studies following a cross to a reporter line show sparse tamoxifen-dependent recombination in Remak Schwann cells within the mature sciatic nerve. However, depletion of neuronal Cre activity by Flpe is partial, with some neurons and astrocytes also showing evidence of Cre reporter activity in the central nervous system. Thus, this mouse line will be useful in mosaic loss-of-function studies, lineage tracing studies following injury, live cell imaging studies, or other experiments benefiting from sparse labeling

    Transcriptional-regulatory convergence across functional MDD risk variants identified by massively parallel reporter assays

    Get PDF
    Abstract Family and population studies indicate clear heritability of major depressive disorder (MDD), though its underlying biology remains unclear. The majority of single-nucleotide polymorphism (SNP) linkage blocks associated with MDD by genome-wide association studies (GWASes) are believed to alter transcriptional regulators (e.g., enhancers, promoters) based on enrichment of marks correlated with these functions. A key to understanding MDD pathophysiology will be elucidation of which SNPs are functional and how such functional variants biologically converge to elicit the disease. Furthermore, retinoids can elicit MDD in patients and promote depressive-like behaviors in rodent models, acting via a regulatory system of retinoid receptor transcription factors (TFs). We therefore sought to simultaneously identify functional genetic variants and assess retinoid pathway regulation of MDD risk loci. Using Massively Parallel Reporter Assays (MPRAs), we functionally screened over 1000 SNPs prioritized from 39 neuropsychiatric trait/disease GWAS loci, selecting SNPs based on overlap with predicted regulatory features—including expression quantitative trait loci (eQTL) and histone marks—from human brains and cell cultures. We identified >100 SNPs with allelic effects on expression in a retinoid-responsive model system. Functional SNPs were enriched for binding sequences of retinoic acid-receptive transcription factors (TFs), with additional allelic differences unmasked by treatment with all-trans retinoic acid (ATRA). Finally, motifs overrepresented across functional SNPs corresponded to TFs highly specific to serotonergic neurons, suggesting an in vivo site of action. Our application of MPRAs to screen MDD-associated SNPs suggests a shared transcriptional-regulatory program across loci, a component of which is unmasked by retinoids
    • …
    corecore