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ARTICLE OPEN

Transcriptional-regulatory convergence across functional MDD
risk variants identified by massively parallel reporter assays
Bernard Mulvey 1 and Joseph D. Dougherty 1✉

© The Author(s) 2021

Family and population studies indicate clear heritability of major depressive disorder (MDD), though its underlying biology remains
unclear. The majority of single-nucleotide polymorphism (SNP) linkage blocks associated with MDD by genome-wide association
studies (GWASes) are believed to alter transcriptional regulators (e.g., enhancers, promoters) based on enrichment of marks
correlated with these functions. A key to understanding MDD pathophysiology will be elucidation of which SNPs are functional and
how such functional variants biologically converge to elicit the disease. Furthermore, retinoids can elicit MDD in patients and
promote depressive-like behaviors in rodent models, acting via a regulatory system of retinoid receptor transcription factors (TFs).
We therefore sought to simultaneously identify functional genetic variants and assess retinoid pathway regulation of MDD risk loci.
Using Massively Parallel Reporter Assays (MPRAs), we functionally screened over 1000 SNPs prioritized from 39 neuropsychiatric
trait/disease GWAS loci, selecting SNPs based on overlap with predicted regulatory features—including expression quantitative trait
loci (eQTL) and histone marks—from human brains and cell cultures. We identified >100 SNPs with allelic effects on expression in a
retinoid-responsive model system. Functional SNPs were enriched for binding sequences of retinoic acid-receptive transcription
factors (TFs), with additional allelic differences unmasked by treatment with all-trans retinoic acid (ATRA). Finally, motifs
overrepresented across functional SNPs corresponded to TFs highly specific to serotonergic neurons, suggesting an in vivo site of
action. Our application of MPRAs to screen MDD-associated SNPs suggests a shared transcriptional-regulatory program across loci, a
component of which is unmasked by retinoids.
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INTRODUCTION
Major depressive disorder (MDD) is a common but debilitating
psychiatric disorder affecting hundreds of millions worldwide [1],
exacting substantial tolls on both individuals [2] and societies [3].
Despite the global burden of MDD, nearly half of patients do not
clinically respond to treatment [4], in part due to limited
understanding of its biological underpinnings. Family studies
have demonstrated that MDD risk is at least 30% heritable [5, 6].
More recently, genome-wide association studies (GWASes) have
demonstrated similar estimates for severe MDD [7], and have
helped narrow in on associated single-nucleotide polymorphisms
(SNPs) [8–12], a tantalizing entry point for understanding the
biology of MDD. However, GWAS studies do not identify causal
variants, but rather implicate wider co-inherited regions consisting
of many SNPs in linkage disequilibrium (LD). Most disease-
associated SNPs are found outside of protein-coding sequences,
suggesting probable roles in transcriptional regulation (TR)
[13–16]. Which linked SNPs have functional allelic impacts on TR
—and how they act together across loci to result in disease—
remains unresolved.
It is thought that undetected, small-effect SNPs acting across

the genome—including conditional SNPs within GWAS-significant
loci [17]—contribute to the substantial heritability not caught by
GWAS-significant SNPs alone [18]. Early support for multiple linked
variants underlying GWAS signals came from examination of cell

line histone marks in loci from six autoimmune disorder GWASes;
all six showed enrichment of TR-suggestive marks at LD SNPs only
in a pertinent cell type (B lymphocytes). Strikingly, 65% of the loci
with ≥1 SNP overlapping lymphocyte histone marks contained
multiple SNP-mark pairs, and over half of these loci contained at
least three such SNPs [19]. Altogether, these findings implied that
GWAS regions likely affect several TR features via several linked
variants, especially in relevant cell types. More recently, GWASes
have identified what are now called “conditional SNPs” associated
with MDD [20]. However, despite predictions of multiple TR SNPs
within GWAS loci, functional demonstration of this phenomenon
has been sparse to date. The largest functional TR assay of MDD-
associated variants examined 34 SNPs using luciferase assays [21],
representing successful but low-throughput identification of
functional MDD SNPs. However, in terms of broad linkage, these
loci constitute well over 10,000 SNPs, which will ultimately require
higher-throughput approaches.
Furthermore, how functional SNPs—even once identified—

biologically result in disease remains unclear, given their
individually small effects on risk. The polygenic [22] and
omnigenic [18] models were conceived of to address these
aspects of complex disease genetics, establishing a guiding
principle for GWAS interpretation. In brief, these theories posit
that consistent emergence of a specific phenotype via widespread
genomic variation necessarily requires common biological
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endpoints of those variants’ effects. At the molecular level, these
points of convergence could be either upstream (shared
regulation across loci) [23] or downstream (common biological
pathways across loci). For downstream analyses, myriad
approaches have been developed to nominate gene targets of
putative TR SNPs using proximity [24], chromatin structure
[25–27], or expression quantitative trait loci (eQTLs) [28–30],
yielding gene sets tested for enrichment in biological pathways
[28, 29, 31] and cell types [32]. However, no analogous
approaches exist for identifying convergent upstream (i.e., TR)
molecular effects of genetic risk, in part because a prerequisite is
defining the functional SNPs.
One possible point of upstream TR convergence of MDD risk

variants is retinoic acid and related compounds (retinoids).
Retinoids drive transcriptional responses via several retinoid-
binding nuclear receptor transcription factors (TFs) and hetero-
dimerizing partners [33, 34]. Besides their critical role in
neurodevelopment, including of depression-implicated limbic
structures [35], retinoids have been associated with MDD onset
and suicidality by epidemiological studies of the retinoid agonist
isotretinoin [36]. Moreover, thyroid hormone is often used as an
adjunctive treatment in MDD, and thyroid receptor TR effects are
frequently carried out cooperatively with RXR family retinoid
receptors [37]. Additional evidence for retinoid pathway activity in
the adult brain—and its overactivity as a risk factor for depression
—comes from rodent pharmacology and genetic models. For
example, knockdown of Cyp26b1—which metabolizes retinoids—
in adult mouse anterior insula suppresses interest in social novelty
by reducing spontaneous activity of excitatory neurons [38].
Likewise, depressive symptoms have been observed in rats after
intracerebroventricular all-trans retinoic acid (ATRA) administra-
tion [39]. In addition, RARA is more abundant in CRH neurons of
affective disorder hypothalami [40], where it both upregulates
corticotropin-releasing hormone (CRH) expression and blocks
glucocorticoid negative feedback on CRH [41], suggesting a link
between retinoid TFs and elevated hypothalamic-pituitary-adrenal
axis activity in MDD. Finally, given the substantial shared genetic
risk across psychiatric disorders [42], it is notable that schizo-
phrenia GWAS loci show enrichment for retinoid TR [43], and that
circulating retinoids are dysregulated in schizophrenia patients
[44]. Similarly, retinoid pathway genes, including CYP26B1, are
dysregulated in postmortem brain from autism spectrum dis-
orders, bipolar disorder, and schizophrenia patients [45]. Interest-
ingly, retinoid deficiencies have been associated with these
diseases, including recent observations of reduced serum levels
of retinoic acid and its precursor, retinol, in schizophrenia [44];
similarly, reductions in serum retinol and expression of all three
RAR genes were shown in autism spectrum disorders [46]. These
findings led us to speculate that a component of MDD-associated
genetic risk may likewise demonstrate an upstream convergence
via recurrent retinoid-mediated TR disruptions across loci.
Massively parallel reporter assays (MPRAs) provide a solution to

both experimentally identify functional variants and, conse-
quently, their shared TR features. MPRAs assess thousands of
DNA elements for transcriptional-regulatory functions and allelic
differences simultaneously by pairing each short genomic
sequence element of interest to several unique barcodes, with a
constant promoter and reporter gene placed in between [47–50].
Delivery of a library of DNA elements to cells, followed by RNA
collection and sequencing, enables quantitative estimation of the
expression driven by each element as a ratio of expressed RNA
barcode to delivered DNA barcode. These assays have recently
been adapted to systematically identify SNPs with functional
allelic TR differences from GWAS loci for several diseases [51–59].
Two key features make MPRAs advantageous for identifying both
functional SNPs and their TR interactions. First, the assay is carried
out via transfection and targeted RNA sequencing, meaning it can
be executed in unmodified cell lines appropriate to the

application. Second, MPRAs can be conducted to define TR effects
of experimental manipulations in these systems, such as drug
administration [60, 61].
Therefore, we sought to experimentally identify functional TR

SNPs from 39 GWAS loci associated with MDD, neuroticism, and
broader psychiatric disease risk, with the hypothesis that
functional SNPs converge at the level of retinoid-mediated TR.
From broad linkage regions, we selected over 1000 SNPs based on
overlapping human brain and neural epigenomic signals sugges-
tive of TR activity. Critically, selection of neither the loci nor the
SNPs was predicated on retinoid involvement, allowing for
unbiased functional screening of a cross-section of MDD GWAS
loci. To ensure we could detect SNPs subject to retinoid-mediated
TR, we used neuroblastoma (N2a) cells, as they are strongly and
rapidly retinoid-responsive [62, 63]. Our initial assay identified over
75 functional SNPs from 29 GWAS regions, confirming that GWAS
loci contain several functional SNPs. We then examined whether
these functional SNPs possessed shared upstream TR features—
namely, transcription factor (TF) binding motifs. Remarkably, there
was indeed enrichment of retinoic acid binding TFs among the
MPRA-functional vs. -non-functional SNPs, supporting our hypoth-
esis. To further characterize retinoid effects on TR at MDD-
associated SNPs, we performed a second assay using all-trans
retinoic acid (ATRA), known to stall division of N2a and other
neuroblastoma cells by inducing neuronal-like differentiation [62].
First, we found that functional SNPs containing retinoid receptor
motifs had increased magnitudes of effect in the presence of
ATRA, consistent with bonafide retinoid receptor TR activity. More
broadly, ATRA led to striking rearrangements of the baseline
regulatory landscape, including altered magnitude and reversed
direction of allelic effects. In addition, it revealed new SNPs with
allelic TR differences unmasked by ATRA treatment. Significant
ATRA-allele interaction SNPs largely overlapped RXRA binding
sites from chromatin immunoprecipitation (ChIP)-seq, as well as
motifs of several known retinoid-induced TFs, indicating broad
roles of both retinoid TFs and their downstream TR systems at
functional MDD-associated SNPs.
Finally, we explored the cell type-specificity of TFs predicted to

regulate our functionally identified SNPs. Strikingly, we found TFs
highly specific to serotonin neurons were strongly enriched
among those we predicted to be recurrently involved in retinoid-
dependent SNP function. These findings suggest that the broad
transcriptional-regulatory systems engaged by retinoids—and as
we illustrate, the genetic component of MDD risk they engage—
may converge on serotonergic neurons. In summary, we identify
MDD-associated functional SNPs with both baseline and ATRA-
mediated allelic differences in TR, and these disproportionately
show upstream convergent regulation by retinoid receptors and
TFs they induce. This highlights a striking potential point of
convergence between genetic risk loci and an environmental risk
factor for MDD.

METHODS
Identifying candidate psychiatric GWAS regulatory variants
To prioritize putative regulatory variants from neuropsychiatric disease
GWAS regions (predominantly MDD; Fig. 1A), SNPs in linkage disequili-
brium (LD) with GWAS tag variants at R2 > 0.1 were collected and
intersected with histone modification, eQTL, Hi-C, and enhancer segmen-
tation datasets from human postmortem tissue and neural lineage cell
lines (see Supplemental Methods, Fig. 1B). SNPs were manually selected
based on diversity and density of annotation overlap within each locus
(Supplemental Methods). As a negative control, we identified candidates
from one additional locus associated with several anthropomorphic traits
[64], in a trait-blinded manner. Altogether, 1453 SNPs were selected. Final
LD of selected SNPs was distributed similarly to starting SNPs (Fig. 1D). To
confirm that we could detect CNS-relevant regulatory SNPs, a positive
control TR SNP functionally demonstrated in mouse retina and brain [57]
was also included.
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Human genomic sequence (hg19) tiles up to 126 bp were taken
centered on the 1454 candidate enhancer SNPs, each paired to ten unique
10 bp barcode sequences per allele and ordered as an oligonucleotide
(oligo) pool from Twist Bioscience (San Francisco, CA). Also in the pool
were 110 “basal” barcodes (no human genomic sequence cloned upstream
of the minimal promoter), such that the only variable sequence between
reporter clones was the barcode itself. The oligos were PCR amplified, then
cloned into plasmid (Fig. 1E); subsequently, a reporter cassette containing
a minimal promoter (hsp68) driving the dsRed reporter gene [65] and the
untranslated “woodchuck” element (for RNA stabilization, to improve
signal) [66] was cloned in.

Massively parallel reporter assays
N2A cells were grown in uncoated 6-well plates in medium consisting of
0.1 µM vacuum-filtered DMEM with 10% Fetal Bovine Serum (2% fetal

bovine serum for the ATRA assay, based on media conditions from the
literature [67, 68]). For transfection, cells were reverse transfected by
plating in antibiotic-free medium onto pre-plated 400 µL mixtures of 2.5 µg
plasmid with Lipofectamine 2000. In the first assay, n= 6 replicate wells
were transfected and co-prepared for sequencing. A power analysis of
these results using the 25th, 50th, and 75th percentile standard deviation
of sequence expression measurements indicated we were ≥80% powered
to detect Bonferroni-corrected p < 0.1 variant effects as low as abs(log2FC)
1.1 (Supplemental Methods). In the drug MPRA experiment, n= 12 wells
were transfected, harvested, and prepared for sequencing together, with
n= 6 ATRA-treated and n= 6 vehicle-treated.
After transfection, cells incubated for 7 h at 37 °C and 5% CO2. Medium

was replaced with the respective medium containing antibiotics, and in the
second assay, a final concentration of 20 µM ATRA dissolved in DMSO, or
equivalent volume of vehicle (DMSO). Medium was not replaced before RNA
collection in the first assay; in the second assay, it was refreshed every 24 h.

Predictive Transcriptional-Regulatory 
Annotation Type

# of MPRA SNPs
Overlapping 

% MPRA SNPs
Overlapping

GTEX eQTL 526 36.20
CMC eQTL 957 65.86
PEC eQTL 709 48.80

ROSMAP eQTL 269 18.51

Fetal Cortex or Organoid Chromatin Marks 479 32.97

Dentate ATAC and/or Hi-C 583 40.12
Astrocyte ATAC and/or Hi-C 362 24.91

Cortex ATAC and/or Hi-C 409 28.15
Enhancer Predictions from PsychENCODE

ENCODE Screen, and/or FANTOM5
910 62.63

Source GWAS Trait/Disease # Tag SNPs # LD SNPs
Wray 2018 MDD 15 458

PGC Cross-Disorder 2019 MDD 5 341

Li 2018 (NPP) MDD 2 128

Hyde 2016 MDD 1 116
Power 2017 MDD 2 100

Howard, Adams 2018 MDD 1 88
CONVERGE MDD 2 77

Ren 2018 MDD 1 2
Demontis 2019 ADHD 2 15

Smith 2016 Neuroticism 1 10
Luciano 2018 Neuroticism 1 6

Meier, Trontti 2018 Anxiety Disorders 1 5
Ward 2019 Mood Instability 1 5

Debette14, Hill18, Lee18 Intelligence, Educational 
Attainment

2 29

Grove 2019 ASD 2 38

Carvalho-Silva 2018 Anthropomorphometric 1 35
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Fig. 1 Design of an MPRA library to identify candidate functional SNPs in MDD loci. A Table of GWAS studies and number of loci covered in
the MPRA library. B Flow chart of design and prioritization process. C Brain and neural transcriptional-regulatory predictive annotation overlap
with SNPs included in MPRA library. Fraction and number of SNPs in designed MPRA library intersecting each transcriptional-regulatory
predictive annotation type. D The manual prioritization process was not LD biased. The subset of prioritized SNPs are spread over LD space
similarly to the full set of screened SNPs. E Schematic of library construction and delivery. Panel adapted from [50].
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Seventy-two hours after transfection, cells were collected and RNA extracted
using the Zymo (Irvine, CA) Clean-and-Concentrator 5 kit per manufacturer
instructions. Eluted RNA was treated with Turbo DNA-free kit to remove any
residual plasmid to prevent contaminating DNA reads during sequencing,
and cleaned a second time using the Zymo kit as above.

Targeted sequencing of RNA and input plasmid
Briefly, equal amounts of RNA (1 µg) from each sample were prepared for
sequencing by targeted cDNA synthesis using a primer against the distal 3′
UTR of the reporter. These, along with input plasmid, were subjected to
PCR, enzymatic digestion, ligation of Illumina sequencing adapters, and a
final PCR to add sample indexes for sequencing. Enzymes, and size-
selection cleanup steps used in this process are fully detailed in
Supplemental Methods. No-reverse-transcriptase controls utilizing sample
RNA were co-prepared for both experiments and did not generate
detectable product, indicating sequencing amplicons generated from RNA
samples were exclusively representative of RNA content. Samples were
sequenced to an average depth of ~8 million reads (first assay) or ~20
million reads (second assay).

Analysis
Allelic SNP effects on expression in the first assay and in single-condition
analyses of the second assay were assessed by t-testing the element’s
expression of each allele across replicates. In the first assay, over 90% of
SNPs had normally distributed expression values (Shapiro–Wilk test, p >
0.05). Uncorrected t-test p-values and Mann–Whitney U test p-values were
well-correlated for the 89 non-normally distributed SNPs (Pearson’s r=
0.825). Nonetheless, for t-test significant SNPs Pemp not passing the
Shapiro–Wilk test, we verified the result by checking for a nominally
significant Mann–Whitney U test at p < 0.05. No SNPs were excluded from
analysis on this basis. dbSNP-assigned reference (“ref”) and alternative
(“alt”) alleles for each SNP were used to define comparison direction (the
difference of activity under the alt allele vs. the ref allele). For the first
MPRA and single-condition analysis of vehicle samples from the second
assay, empirical p values (Pemp) were calculated via simulated allelic
comparisons between random subsets of “basal” barcodes (see Supple-
mental Methods) following an analogous procedure from a multiplex
CRISPR study [69], with significance defined as Pemp < 0.05 unless
specified otherwise. This ensures that a representative cross-section of
expression variability driven by barcode sequences is accounted for when
assessing TR differences. Single-condition analysis of ATRA samples utilized
standard Benjamini–Hochberg FDR correction, as primary effects of
interest in these samples were ascertained by linear modeling. For analysis
of ATRA effects, we verified that variances were similar between the drug
and vehicle conditions; indeed, the median barcode expression level
standard deviation was 0.1216 in ATRA-treated and 0.1226 in vehicle-
treated samples (with respective 25th and 75th percentile standard
deviations also matched within 0.005 expression units). We calculated
samplewise barcode-level expression values passing the “single-condition”
filtering steps used for t-testing (Supplemental Methods) were fitted using
a linear mixed model (LMM) requiring a minimum of 40% (96) of the 240
possible expression measurements per SNP. The LMM included a random
term for replicate (to account for well-specific effects), expressed as:
barcode expression ~ allele + drug + allele:drug+ (1|replicate). Empirical p
value calculation from LMM F statistics was performed in an analogous
manner to the prior experiment, generating a vector of F statistics for each
coefficient from 20,000 randomized basal-only comparisons. All SNPs with
an interaction Pemp < 0.05 also had a likelihood ratio test (LRT) p < 0.051
comparing a maximum-likelihood (ML) interaction model to an ML LMM
with additive terms only, indicating that the interactive model was more
predictive but not overfit compared to an additive model. For SNPs with
significant allele and interaction coefficients, a meaningful allele main
effect was considered present if the single-condition vehicle and ATRA
analyses showed the same allelic direction of effect, with a vehicle Pemp <
0.1 and ATRA FDR < 0.1 (i.e., near-significant within each condition of n= 6,
thus reasonably capable of achieving significance in the LMM analysis of
the two conditions combined).

MotifbreakR analysis and functional SNP enrichment for
perturbed motifs
The motifbreakR [70] package was used to identify TF binding motifs
significantly different between alleles of each SNP. Briefly, the number of
MPRA-identified functional SNPs matching a given TF’s motif(s) for at least

one allele was compared to the number of non-functional SNPs matching
across 10,000 random draws of n (number of significant) SNPs. A second
version of this analysis focused on the concordance rate—that is, whether
the frequency of functional variants experiencing concurrent strengthen-
ing of motif and expression or vice versa—was significant compared to
10,000 draws of n random SNPs from the analyzed set. Analysis of the first
assay’s SNPs defined functionality based on a Pemp threshold of 0.05. We
performed two motif analyses of the second assay results, one comparing
allele main effect SNPs (Pemp < 0.1) to those with Pemp > 0.1 for allele,
drug, and interaction effects, representing the breadth of functional
variant-susceptible cis-regulators. The second analysis compared interac-
tion SNPs (Pemp < 0.05) to SNPs with an allele main effect (Pempallele < 0.1)
but no interaction (Pempinteraction > 0.1).

Analyses of functional-SNP enriched TF expression in human
brain and chromatin immunoprecipitation (ChIP)-seq
We utilized outside ChIP-seq datasets to validate motif-based predictions
of retinoid receptor binding and refine prediction of involved TFs. We
intersected our functional SNPs to 25 tracks of ChIP-seq for retinoid
receptors (19 human [71, 72], 6 mouse (3 ATRA-treated, 3 vehicle-treated)
converted to hg19 coordinates using UCSC’s LiftOver [73]); 11 tracks of
RXR-heterodimerization partners (10 human THRA/THRB [71, 72] and one
aggregate analysis of human VDR [74]); and human genome-wide
predictions of DR5 [75], a canonical RAR•RXR heterodimer binding
sequence. For functional SNPs implicated at an RAR, RXR, VDR, or THRA/
B site by either motifbreakR or ChIP, we identified potential target genes
using chromatin-conformation [76] and eQTL [77–80] data. We performed
broad-scope gene enrichment analysis of this gene set using Enrichr [81].
To examine shared biology of TFs implicated by motifbreakR enrichment at
functional variants, we utilized PantherDb [82]. We finally examined TFs for
enrichment among highly-expressed genes in adult and developing
human brain using the ABAEnrichment package’s Wilcoxon approach [83],
effectively weighting TFs by the number of functional SNPs implicated by
motifbreakR (see Supplemental Methods).

RESULTS
Many MDD loci contain more than one functional SNP
We identified >1000 SNPs from MDD-associated GWAS loci,
prioritizing SNPs overlapping with epigenetic data from neural
samples, and cloned them into an MPRA library (Fig. 1). We
included one positive control SNP, shown to alter neural tissue
gene expression, and one control locus near CDKAL1 not a priori
associated with psychiatric disease. To identify functional variants
from these SNPs, the library was transfected into N2a cells (n= 6
replicates, Fig. 1E). Variant activity was assessed by RNA
sequencing and barcode counts compared to input plasmid
barcode counts. After filtering for read depth and barcode
representation, 1013 SNPs spanning all 40 LD regions remained
for analysis. Results were highly replicable across samples (Pearson
r 0.63–0.85 for barcode expression; 0.90–0.96 for elements,
Supplemental Figure S1). We use “element” to signify the set of
barcodes corresponding to one unique sequence of interest
(1 SNP= 2 elements).
Of 1013 SNPs analyzed, we identified significant allelic TR

(Pemp < 0.05) at 76 SNPs (65 from MDD loci; 1 from the control
CDKAL1 locus) across 27 of the 40 analyzed GWAS regions, with
effects ranging 0.1 to 0.63 (median 0.2) log2 fold-change (Fig. 2B).
Interestingly, the functional variant from the control locus is
suggestively associated (GWAS p < 5 × 10−6) with “Poisoning by
analgesics, antipyretics, and antirheumatics” in UK Biobank [84]. As
this likely includes attempted suicides, the SNP was retained for
analyses. The positive control SNP, which we utilized to confirm
our ability to detect small-effect sizes expected of regulatory SNPs,
showed the expected lower expression of the T allele at a Pemp of
<0.051 (Fig. 2A) [57].
While our assay was designed to broadly examine wide LD

regions around GWAS index variants, we did identify one
functional variant, rs11209952, in a fine-mapped credible set of
variants for seeking general practitioner care for depression in UK
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Biobank [85]. Moreover, consistent with prior studies of “condi-
tional” or “secondary” SNP associations—wherein additional LD
SNPs have associations independent of their linked, larger-effect
variant [20, 86, 87]—we identified several loci with multiple
functional SNPs (Fig. 2C) (range 1–8, mean 2.8, median 2). Notably,
we identified as functional rs1806153, a recently defined
“conditional SNP” for MDD [20]. Our findings support models
predicting multiple functional SNPs in GWAS loci, and directly
validate one such finding from association analysis.
One notable TR SNP we identified, rs314267, comes from a

“LIN28B” (nearest gene) GWAS locus repeatedly linked to MDD

[9, 12] as well as cross-psychiatric disorder risk [42]. MPRA
significance and effect size are illustrated for the region, showing
that this locus contains several functional SNPs (Fig. 2D).
All significant MPRA SNPs in the locus had effect directions
consistent with brain eQTLs. rs314267 is the most significant
LIN28B eQTL SNP (eSNP) in the region in PsychENCODE [78], and
is a CommonMind Consortium (CMC) eSNP for both LIN28B and
HACE1 [77]. HACE1 is also downregulated in postmortem MDD
hippocampal CA1 [88]. Hi-C data from human neural cell cultures
suggest rs314267 is within a neuron-specific LIN28B regulator,
with promoter chromatin contacts found in dentate and cortical
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concordant motif and MPRA effects (right column) are shown. Concordant effects were defined by greater MPRA expression driven by the
allele better-matched to the corresponding TF motif and vice versa—the expected behavior of strictly activating TFs.
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neurons, but not astrocytes [76]. LIN28B plays broad roles in
neurodevelopment [89] and has potentially sex-differentiated
functions [90–93]; considering sex differences in MDD preva-
lence and severity [94, 95], LIN28B constitutes an especially
interesting gene target from this locus. Finally, we examined
potential upstream TR mechanisms for SNP activity using
VARAdb [96]. Query of rs314267 revealed a two order of
magnitude allelic difference in the motif match p-value for
TCF4—a gene itself implicated in cross-psychiatric-disorder risk
[42, 97]. Overall, the identification of functional SNPs implicated
in regulation of HACE1 and LIN28B exemplifies the ability of
MPRAs to identify functional variants involving sensible TR
mechanisms and target genes.

Shared regulatory architecture across distinct loci
We next sought to test our hypothesis that functional MDD risk
variants shared retinoic acid-related TR architecture. If so,
functional SNPs should disproportionately disrupt binding sites
of retinoid-binding TFs compared to SNPs without an allelic effect
on TR. Such data would indicate that MDD risk is mediated in part
through perturbations of specific upstream transcriptional circuits
and may highlight how risk conferred through retinoids converges
with risk conferred through genetics to perturb downstream gene
expression.
To take an unbiased approach to our retinoid hypothesis, we

broadly analyzed all motifs showing enrichment at TR SNPs. Motifs
for several dozen TFs were perturbed by the functional SNPs more
frequently than expected, often with ‘strong’ perturbations to
motifs and/or overrepresentation of concordant expression effects
(Fig. 2E, Supplemental Figure S2). This included several TFs aligned
with biological processes relevant to psychiatric disease. For
example, several TFs are involved in steroid pathways, from
regulating biogenesis (SREBF family, 6 SNPs) to conveying
downstream TR effects—most notably, via glucocorticoid receptor
(NR3C1, 5 SNPs; Supplemental Figure S3), a central component of
the stress response. Functional SNP overrepresentation of SREBF
motifs is consistent with high expression of these TFs in N2as and
related neuroblastomas [98, 99]. A second group of transcription
factors included three TFs involved in neural lineage commitment/
development: TCF3 [100, 101], EOMES, and NR2F1 [102] (6, 4, and
3 SNPs, respectively). Altogether, functional SNP enrichment for
these TFs’ motifs bolster our confidence in this approach, as (a)
detected variation involves TFs known to be expressed in N2As
(SREBF); (b) functional variation involves TFs with roles in
developing CNS, where disease variants likely act; and (c) that
the single-best characterized trigger of MDD (stress) is reflected in
enrichment of alterations to NR3C1 motifs.
Finally, consistent with our hypothesis of convergence on

retinoid-mediated TR, functional variants were enriched for “strong”
perturbations of retinoid receptor TF motifs (Fig. 3), including RARA,
RARB, and RXRA (5 SNPs from 4 MDD loci, Fig. 3). Especially notable
is the motif configuration at SNP rs34416841, which falls within
three partially overlapping motifs for retinoid TFs. In addition, the
elements overlapping rs489591 and rs13330178 appear to be
functional human retinoid TF binding sites in vivo based on DNAse
hypersensitivity footprinting [103].

Retinoids unmask additional functional SNPs in MDD loci
Our findings supported the hypothesis that MDD-associated
variants across multiple loci converge on TR, including that
modulated by retinoids. We thus designed a pharmacological
follow-up with two goals in mind. The first goal was to functionally
verify that retinoids were involved in TR at SNPs where their motifs
were found (in cis), and potentially unmask additional retinoid-
targeted alleles. Our second goal was to further assess retinoid
signaling trans (i.e., indirect) effects on variants from these same
GWAS regions, e.g., via non-retinoid TF induction, co-regulation, or

repression [33]. Therefore, we performed a second MPRA with an
all-trans retinoic acid (ATRA) condition.
After 48 h, cultures were imaged to verify drug activity (as ATRA

is light-sensitive) based on known morphologic responses of N2as
to ATRA, which include neurite outgrowth and mitotic arrest
[62, 104, 105]. Indeed, drug-treated cells had a qualitatively lower
cell density and produced neurite-like processes (Fig. 4A) in
comparison to vehicle-treated cells (Fig. 4B). After RNA sequen-
cing, we first analyzed vehicle-treated replicates alone to ensure
replicability of the assay. Element expression levels in the vehicle
condition strongly correlated to the first experiment (Pearson r=
0.91; Fig. 4C), and replicated the functional variants (Fig. 4D); all
31 shared significant SNPs showed consistent directions of effect.
We next applied a linear mixed model (LMM) to identify SNPs

responding to ATRA (that is, allele-drug interactions). A total of
1079 SNPs were analyzed after filtering for read and barcode
depth. In part due to the effective doubling in power to detect
allelic effects with 12 replicates and the LMM approach, we now
identified 137 variants with a main effect of allele (129 from MDD
loci). Four of the five retinoid receptor motif-perturbing variants
from the first assay passed filtering; all four of these variants again
showed allelic main effects (all Pemp < 0.01), as did many other
functional variants identified in the previous experiment (Fig. 4D).
To our surprise, more variants showed a significant drug-allele
interaction effect: a total of 128 SNPs (122 from MDD loci)
(Fig. 4E, F). Among the drug-allele interaction SNPs were one of
the four retinoid-related SNPs identified from the first assay
(rs4801117; Pempinteraction < 0.025, Fig. 4G), while another trended
toward interaction (rs489591; Pempinteraction= 0.117). This strongly
supports a role of retinoid TF activity at rs4801117 as predicted by
the motif analysis. More broadly, comparison of changes between
the two conditions reveals the striking extent to which the
regulatory landscape of the N2As was altered by ATRA (Fig. 4F and
H). Notably, several additional functional variants were identified
in the previously highlighted LIN28B locus, further illustrating
multi-variant and context-dependent aspects of GWAS loci (Fig. 4E
and I). In all, this experiment highlights the ability of MPRAs to
detect contextual influences such as cell states and signaling on
functional noncoding variation, and to unmask distinct, context-
dependent functional SNPs.

Retinoids reveal additional axes of convergent regulation at
functional MDD-associated SNPs at levels of TF and cell type
As the ATRA-based assay provided improved power to identify
allelic variant effects on expression, we again employed our
motifbreakR-based analyses to assess convergent transcriptional
mechanisms underlying identified regulatory variants. When
examining SNPs with allelic effects in comparison to SNPs with
no allelic, drug, or interaction effects, several retinoid receptor
motifs were again overrepresented, including those of RXRA,
RXRB, RARA, and RARG (Fig. 5A, Supplemental Figure S4), totaling
11 of the 92 allele main effect SNPs analyzed, spanning 10 MDD
GWAS loci. These findings further support retinoid receptor
binding sites as an upstream regulatory system recurrently
involved in MDD risk genetics.
As retinoids resulted in stark changes across the

transcriptional-regulatory landscape, we further sought to
predict TFs potentially underlying allelic effects following
retinoid exposure. Therefore, we also analyzed the interaction
SNPs in comparison to allelic SNPs that were not subject to
interactions. This revealed a novel set of TFs not observed in the
preceding analyses, including TFs with roles in neural differ-
entiation and maturation (Fig. 5A, Supplemental Figure S4), as
well thyroid hormone receptor THRB, an RXR binding partner. We
compared the overrepresented motifs to TFs recently demon-
strated to be upregulated in human neuroblastoma lines (KCNR,
LAN5) by ATRA. Of the 26 TFs identified as ATRA-induced in these
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two lines, motifs were available for 18 in our analysis. Of these, 6
of the TFs were enriched among allele main-effect-only SNPs,
while 12 of these TFs were enriched among the retinoid-allele
interaction variants [104] (Fig. 5A, Supplemental Figure S4),
supporting our predictions of TFs playing ATRA-dependent roles
at functional SNPs.

Integrative analysis of TF sets at functional variants: TF
binding, spatiotemporal brain enrichment, and putative
target genes
As retinoid receptors have highly redundant binding motifs, we
sought to both validate motif-based implication of retinoid
receptors and more finely identify the particular TFs binding at
functional SNPs. We aggregated ChIP-seq data for RAR, RXR, and
RXR-heterodimerization partners (VDR, THRA, THRB) and identified
functional SNPs overlapping peaks for each TF. Altogether, 35 of
our 277 functional SNPs from across the two assays were in at
least one such binding site (Supplemental Table 1). 15/17 of the
allele-ATRA interaction SNPs overlapped a ChIP peak for RXRA,
suggesting RXRA may be the common mediator of the observed
retinoid-dependent SNP effects.
We also performed Gene Ontology analysis of functional variant

enriched TFs against a background of all TFs in the motifbreakR
tool using PANTHERdb but found no detailed Biological Processes
of note (Supplemental Table 2). We next sought to examine
whether TFs enriched at functional variants in our motif analyses
corresponded to particular spatiotemporal expression patterns in

the brain. To favor the most broadly-implicated TFs, we utilized
the ABAEnrichment package’s Wilcoxon analysis approach on the
TF sets from the ATRA experiment using the number of
motifbreakR SNPs as the TF gene “scores”. In this analysis, several
brain regions across developmental stages were nominally
enriched (family-wide error rates <0.05) in ATRA-dependent and
-independent TF expression, with especially broad enrichment at
high expression thresholds (≥90th percentile) in adolescent brain
(Supplemental Table 3). This does not appear to be an artifact of
the cell model, considering that neuroblastomas are arrested in a
neural crest progenitor (i.e., pre-/peri-natal cell type) stage. If
replicated in future studies with larger adolescent sample
numbers, this may suggest that retinoid-mediated aspects of
MDD genetic risk are especially active in the adolescent brain,
perhaps contributing to frequent emergence of the disorder
around this time.
We additionally utilized these sets of TFs as gene sets to

investigate whether retinoid-dependent or -independent reg-
ulatory variants might be particularly active in certain cell types
of the brain. We screened for enrichment of these TFs among
genes with strong cell type-specific expression in brain as
previously defined for over 20 cell type translatomes [32]. Three
TFs (spanning 8 ATRA-interacting SNPs) were discovered to be
highly specific to serotonin neurons (Fig. 5B): GATA2, GATA3,
and FEV, while no cell type enrichments under FDR < 0.1 were
noted for TFs linked to ATRA-independent variants. Supporting
these findings, an enrichment analysis of putative target genes
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(implicated by brain eQTL or neural Hi-C) of SNPs in retinoid TF
motifs or ChIP peaks (Supplemental Table 4) revealed 5 genes
nominally enriched for high regional expression in rhombomere
9, which gives rise to medullary populations of serotonin
neurons [106] (The full results can be explored at https://
maayanlab.cloud/Enrichr/enrich?dataset=27d6db2a8510a90ed
0d78e6b60c59287).
Using the R2 database (http://r2.amc.nl), we examined expres-

sion of FEV, GATA2, and GATA3 TFs in 24 human neuroblastoma
lines (GEO accession GSE28019), retinoic acid-treated human SH-
SY5Y neuroblastoma cells [107], alongside human neural progeni-
tors [108] and melanoma lines as comparators [109], confirming
neuroblastomas strongly express all three of these TFs (Supple-
mental Figure S5). Single-cell RNA sequencing data from mouse
brain confirms the specificity of these TFs, revealing that these TFs
are only expressed in serotonergic, noradrenergic, peripheral
autonomic, and midbrain inhibitory neurons—with all three
expressed in serotonin neurons [110]. Furthermore, exogenous
retinoids have been shown to lower circulating serotonin in
humans [46] and to alter morphology of rat raphe neurons in slice
culture [111], suggesting these neurons are retinoid responsive.
We do not believe our finding is an artifact of the N2a system, as
we could identify no evidence in the literature suggesting a
serotonin-like identity of N2a cells with or without ATRA
treatment. Altogether, these findings suggest serotonin neurons
and closely related cell types [93] may be cellular points of
convergence for several retinoid-mediated functional SNP effects
on MDD risk.

DISCUSSION
To date, most functional investigations of SNPs in the context of
psychiatric disorders have taken place in a low-throughput
manner, such as single-variant classical reporter assays [21] or
using CRISPR-Cas9 technology to edit limited positions for deep
phenotyping [112]. Here, we leveraged MPRA to screen over 1000
SNPs from loci associated with MDD, related phenotypes, and
broader psychiatric disease, demonstrating the utility of this
technique for dissecting the functional regulatory architecture of
psychiatric GWAS loci, and defining shared upstream regulatory
features across loci.
In doing so, we identify over 100 SNPs with allelic effects on

expression, with most coming from loci containing ≥2 functional
SNPs. These data provide experimental support for the prediction
that multiple SNPs with allelic effects exist within GWAS loci as put
forth in polygenic/omnigenic theory literature. We further
examined the omnigenic hypothesis’ more central prediction of
regulatory convergence across loci. By examining the shared
regulatory features (TF binding motifs) based on enrichment at
functional SNPs, we were able to predict several TFs with TR
activity recurrently altered across MDD-associated SNPs, high-
lighting retinoid receptors in particular.
Retinoids are encountered both exogenously (e.g., as ATRA in

oncology, and as isotretinoin, carrying a black-box warning for
suicidality) and endogenously, including during brain develop-
ment. To investigate how SNP functions may be altered by
retinoids, we repeated the assay with an ATRA condition. ATRA
drastically rearranged the TR landscape of N2a cells, resulting in
altered and novel allelic effects at over 100 SNPs and revealing
ATRA-dependent mechanisms of function across 122 SNPs from
22 of 26 MDD GWAS loci assessed. Of 17 ATRA-interacting
functional SNPs overlapping ChIP peaks for retinoid receptors, 15
overlapped ChIP sites of RXRA, (Supplemental Table 1b)
suggesting it may be central in functional SNP activity at retinoid
receptor binding sites in this system. Interestingly, single-cell
epigenomics of human cortical cell types recently found RXRA
motifs to be uniquely enriched in open chromatin of SST
interneurons [113], a strong candidate cell type for MDD [114].

These findings suggest that retinoid receptors—RXRA in
particular—merit mechanistic follow-up regarding TR differences
at MDD-associated SNPs. Future work may be able to leverage
biobank-level datasets to ascertain whether retinoid-interacting
SNPs are overrepresented in retinoid-treated patients experien-
cing adverse psychiatric side effects. While data on endogenous
retinoids, e.g., plasma values, are not currently available in large
genotype-phenotype-health record cohorts like UK Biobank,
future datasets may enable investigation of circulating retinoids
and their interaction with genotype in cognitive and psychiatric
phenotypes.
The methodologic requirements of high-throughput assays

such as MPRAs bring inherent limitations to their results. The
primary precaution in interpreting these results concerns cell
type relevance. MPRAs are subject to the TR landscape of the cell
type used. Neuroblastoma cells, including N2As, are derived from
peripheral neural crest progenitors—though they can be differ-
entiated into dopaminergic neurons [105] and commit to
neuronal differentiation with ATRA [62, 68]—and were selected
for these assays based on intact retinoid signaling rather than
representing a disease cell type per se. On the other hand, the
neural crest-derived autonomic nervous system has received little
consideration (relative to brain) in psychiatric genetics of MDD
despite the well-appreciated role of stress in depression. These
data may form an interesting foundation for future study of
autonomic effects of MDD genetic risk.
Still, we can broadly speculate on brain cell types implicated by

our findings. A notable prior pharmacology MPRA cleverly tested
gDNA fragments for regulatory activity over a time course of
dexamethasone treatment, while collecting epigenomic data in
the same cell type over the same time course to compare MPRA
signal and endogenous genomic marks. They found that
endogenous genomic regulatory elements with repressive marks
or depleted of glucocorticoid receptor binding were oftentimes
active and/or dexamethasone-differentially active when assayed
on the MPRA plasmids. This suggests that the transcriptional-
regulatory capacity of an MPRA is not constrained by the
epigenome of the model cell, but rather by its expressed TFs
[61]. As such, retinoid receptor-mediated SNP functions observed
are not limited to sequences that would be active in the N2a
genome; as such, it is entirely plausible that the observed effects
also occur in retinoid-receptor expressing brain populations.
Mouse nervous system single-cell RNA-seq suggests retinoid
receptor expression is absent in brain glia, but robust in many
neuron types [110]. Thus, we suspect the directly-mediated
retinoid receptor SNP effects we observe may be neuron-
specific. Future studies may be able to address the interesting
question of differences in neuronal subtypes exhibiting functional
SNP effects.
We find that principles of the omnigenic model appear to hold

true for MDD risk genetics, including the presence of far more
functional variants (a total of 277 SNPs with allelic and/or
interaction effects of 1178 assessed across the two assays;
Supplemental Table 1) than there were GWAS loci (i.e., tag SNPs).
We find, interestingly, that functional SNPs form convergent
subsets of upstream (transcription-regulatory) sequences and
systems, which in turn have shared retinoid dependence and
are collectively enriched in serotonin neurons via 8 ATRA-
interacting functional SNPs in binding motifs of GATA2, GATA3,
and FEV. It has previously been demonstrated that systemic
administration of ATRA depletes serotonin by over 40% in the rat
brain [115], supporting the serotonin system as a convergent
target of retinoid-regulated pathways. As GWAS of MDD begins to
explore severe, treatment-refractory cases [7], it will be interesting
to see whether associated variation still shows such convergence,
as treatment-resistant depression (generally, non-response to two
or more classes of antidepressant) effectively signifies non-
response to multiple serotonergic agents.
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In all, we assessed the architecture of cis-regulatory variation in
psychiatric disease risk loci, identifying at least one functional SNP
in the majority of the 40 GWAS loci examined, largely
corresponding to MDD-associated SNPs. Strikingly, retinoid
receptor binding sites and TR systems subject to regulation by
ATRA have a substantial impact on whether and how MDD-
associated SNPs are functional. These findings constitute a robust
experimental demonstration of the influence of physiological and
environmental states on the molecular activities of disease-
associated SNPs, and constitute a high-confidence set of MDD
SNPs meriting deeper functional characterization of both their TR
mechanisms and their environmental interactions.

CODE AVAILABILITY
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