30,044 research outputs found

    Evaluation of a Pound Net Leader Designed to Reduce Sea Turtle Bycatch

    Get PDF
    Offshore pound net leaders in the southern portion of Chesapeake Bay in Virginia waters were documented to incidentally take protected loggerhead, Caretta caretta, and Kemp’s ridley, Lepidochelys kempii, sea turtles. Because of these losses, NOAA’s National Marine Fisheries Service (NMFS) in 2004 closed the area to offshore pound net leaders annually from 6 May to 15 July and initiated a study of an experimental leader design that replaced the top two-thirds of the traditional mesh panel leader with vertical ropes (0.95 cm) spaced 61 cm apart. This experimental leader was tested on four pound net sites on the eastern shore of Chesapeake Bay in 2004 and 2005. During the 2 trial periods, 21 loggerhead and Kemp’s ridley sea turtles were found interacting with the control leader and 1 leatherback turtle, Dermochelys coriacea, was found interacting with the experimental leader. Results of a negative binomial regression analysis comparing the two leader designs found the experimental leader significantly reduced sea turtle interactions (p=0.03). Finfish were sampled from the pound nets in the study to assess finfish catch performance differences between the two leader designs. Although the conclusions from this element of the experiment are not robust, paired t-test and Wilcoxon signed rank test results determined no significant harvest weight difference between the two leaders. Kolmogorov-Smirnov tests did not reveal any substantive size selectivity differences between the two leaders

    High-density diffuse optical tomography for imaging human brain function

    Get PDF
    This review describes the unique opportunities and challenges for noninvasive optical mapping of human brain function. Diffuse optical methods offer safe, portable, and radiation free alternatives to traditional technologies like positron emission tomography or functional magnetic resonance imaging (fMRI). Recent developments in high-density diffuse optical tomography (HD-DOT) have demonstrated capabilities for mapping human cortical brain function over an extended field of view with image quality approaching that of fMRI. In this review, we cover fundamental principles of the diffusion of near infrared light in biological tissue. We discuss the challenges involved in the HD-DOT system design and implementation that must be overcome to acquire the signal-to-noise necessary to measure and locate brain function at the depth of the cortex. We discuss strategies for validation of the sensitivity, specificity, and reliability of HD-DOT acquired maps of cortical brain function. We then provide a brief overview of some clinical applications of HD-DOT. Though diffuse optical measurements of neurophysiology have existed for several decades, tremendous opportunity remains to advance optical imaging of brain function to address a crucial niche in basic and clinical neuroscience: that of bedside and minimally constrained high fidelity imaging of brain function

    Isoprene Emission and Carbon Dioxide Protect Aspen Leaves from Heat Stress

    Get PDF
    High temperature, especially above 35oC, is known to reduce leaf photosynthetic rate in many tree species. This study investigated the effect of high temperature on isoprene-emitting (aspen) and non- emitting (birch) trees under ambient and elevated CO2 under open field conditions. Aspen trees tolerate heat better than birch trees and elevated CO2 protects both species against moderate heat stress. The increased thermotolerance in aspen trees compared to the birch trees may result from the aspen's ability to produce isoprene. Elevated CO2 increased carboxylation capacity, photosynthetic electron transport capacity and triose phosphate use in both birch and aspen trees. High temperature decreased all of these parameters in birch regardless of CO2 treatment but only photosynthetic electron transport and triose phosphate use at ambient CO2 were reduced in aspen. As temperature rises, non-isoprene-emitting trees will be at a disadvantage and biological diversity and species richness might be lost in some ecosystems. Our results indicate that isoprene emitting tree species will have an advantage over non-isoprene emitting ones under high temperatures

    A Possible Resolution of the Black Hole Information Puzzle

    Get PDF
    The problem of information loss is considered under the assumption that the process of black hole evaporation terminates in the decay of the black hole interior into a baby universe. We show that such theories can be decomposed into superselection sectors labeled by eigenvalues of the third-quantized baby universe field operator, and that scattering is unitary within each superselection sector. This result relies crucially on the quantum-mechanical variability of the decay time. It is further argued that the decay rate in the black hole rest frame is necessarily proportional to e−Stote^{-S_{tot}}, where StotS_{tot} is the total entropy produced during the evaporation process, entailing a very long-lived remnant.Comment: 15 pages, 3 uuencoded figures. Revised version contains some notational simplification
    • …
    corecore