84 research outputs found

    Biases in the estimates of τ<sub>2</sub>, and biases and SEs of the pooled estimates of <i>β</i><sub>2</sub> from multivariate vs. univariate approaches by whether or not <i>ρ</i><sub><i>b</i></sub> is estimated at parameter boundary in 5000 replications in complete summary data scenario.

    No full text
    <p>Scenario: <math><mi>N</mi><mi> </mi><mo>=</mo><mi> </mi><mn>10000</mn><mo>,</mo><mi> </mi><mi>m</mi><mi> </mi><mo>=</mo><mi> </mi><mn>10</mn><mo>,</mo><mi> </mi><mi>M</mi><mi>A</mi><mi>F</mi><mi> </mi><mo>=</mo><mi> </mi><mn>0.20</mn><mo>,</mo><mi> </mi><msub><mrow><mi>β</mi></mrow><mrow><mn>1</mn></mrow></msub><mi> </mi><mo>=</mo><mi> </mi><mn>0.3</mn><mo>,</mo><mi> </mi><msub><mrow><mi>β</mi></mrow><mrow><mn>2</mn></mrow></msub><mi> </mi><mo>=</mo><mi> </mi><mn>0.4</mn><mo>,</mo><mi> </mi><msubsup><mrow><mi>τ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mi> </mi><mo>=</mo><mi> </mi><msubsup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mi> </mi><mo>=</mo><mi> </mi><mn>0.0033</mn><mo>;</mo><mi> </mi><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow><mi> </mi><mo>=</mo><mi> </mi><mn>50</mn><mi>%</mi></math>, <i>ρ</i><sub><i>b</i></sub> = 0.75, <i>ρ</i><sub><i>w</i></sub> = 0.5. Symbols and abbreviations: <i>N</i>, total subjects; <i>m</i>, number of studies, <i>β</i><sub>2</sub> and <i>τ</i><sub>2</sub>, average effect and between-study standard deviation of true study-wise effects for end point 2, respectively; <i>I</i><sup>2</sup> = degree of between-study heterogeneity; <i>ρ</i><sub><i>b</i></sub> and <i>ρ</i><sub><i>w</i></sub>, true between-and within-study correlations, respectively; MAF, minor allele frequency; SE, standard error; MV, multivariate approach; UV, univariate approach.</p

    Simulation scenarios and methods for IPD data generation.

    No full text
    <p>Simulation scenarios and methods for IPD data generation.</p

    Relative mean bias percentage, RMSE, and coverage probability when N = 10000, m = 10, <i>β</i><sub>1</sub> = 0.2, <i>β</i><sub>2</sub> = 0.3, <i>β</i><sub>3</sub> = 0.3, <i>β</i><sub><i>b</i>12</sub> = 0.6, <i>β</i><sub><i>b</i>13</sub> = 0.7, <i>ρ</i><sub><i>b</i>23</sub> = 0.6, <i>ρ</i><sub><i>w</i>12</sub> = <i>ρ</i><sub><i>w</i>13</sub> = <i>ρ</i><sub><i>w</i>23</sub> = 0.

    No full text
    <p>Relative mean bias percentage, RMSE, and coverage probability when N = 10000, m = 10, <i>β</i><sub>1</sub> = 0.2, <i>β</i><sub>2</sub> = 0.3, <i>β</i><sub>3</sub> = 0.3, <i>β</i><sub><i>b</i>12</sub> = 0.6, <i>β</i><sub><i>b</i>13</sub> = 0.7, <i>ρ</i><sub><i>b</i>23</sub> = 0.6, <i>ρ</i><sub><i>w</i>12</sub> = <i>ρ</i><sub><i>w</i>13</sub> = <i>ρ</i><sub><i>w</i>23</sub> = 0.</p

    Relative mean bias percentage, RMSE and coverage probability when N = 10000, m = 10, <i>β</i><sub>1</sub> = 0.1, <i>β</i><sub>2</sub> = 0.1, <i>ρ</i><sub><i>b</i></sub> = 0.5, <i>ρ</i><sub><i>w</i></sub> = 0.3.

    No full text
    <p>Relative mean bias percentage, RMSE and coverage probability when N = 10000, m = 10, <i>β</i><sub>1</sub> = 0.1, <i>β</i><sub>2</sub> = 0.1, <i>ρ</i><sub><i>b</i></sub> = 0.5, <i>ρ</i><sub><i>w</i></sub> = 0.3.</p

    Relative mean bias percentage, RMSE and coverage probability when N = 30000, m = 30, <i>β</i><sub>1</sub> = 0.1, <i>β</i><sub>2</sub> = 0.2, <i>ρ</i><sub>b</sub> = 0.6, <i>ρ</i><sub>w</sub> = 0.3.

    No full text
    <p>Relative mean bias percentage, RMSE and coverage probability when N = 30000, m = 30, <i>β</i><sub>1</sub> = 0.1, <i>β</i><sub>2</sub> = 0.2, <i>ρ</i><sub>b</sub> = 0.6, <i>ρ</i><sub>w</sub> = 0.3.</p

    Relative mean bias percentage, RMSE and coverage probability when N = 20000, m = 15, <i>β</i><sub>1</sub> = 0.1, <i>β</i><sub>2</sub> = 0.1, <i>ρ</i><sub><i>b</i></sub> = 0.6, <i>ρ</i><sub><i>w</i></sub> = 0.3.

    No full text
    <p>Relative mean bias percentage, RMSE and coverage probability when N = 20000, m = 15, <i>β</i><sub>1</sub> = 0.1, <i>β</i><sub>2</sub> = 0.1, <i>ρ</i><sub><i>b</i></sub> = 0.6, <i>ρ</i><sub><i>w</i></sub> = 0.3.</p

    Genome-wide linkage analysis of systolic blood pressure slope using the Genetic Analysis Workshop 13 data sets-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Genome-wide linkage analysis of systolic blood pressure slope using the Genetic Analysis Workshop 13 data sets"</p><p>http://www.biomedcentral.com/1471-2156/4/s1/S86</p><p>BMC Genetics 2003;4(Suppl 1):S86-S86.</p><p>Published online 31 Dec 2003</p><p>PMCID:PMC1866526.</p><p></p>nd Method

    Minimum detectable hazard ratio for environmental risk exposure.

    No full text
    <p>Minimum detectable hazard ratio for environmental risk exposure.</p

    Power Profile at Significance Level of 0.0001 for Gene-Environment Interaction.

    No full text
    <p>“A”, “B” and “C” represent diabetes, dementia and Parkinson’s disease respectively. “1”, “2” and “3” represent that both environmental and genetic risk factors are rare (prevalence = 0.01), common (prevalence = 0.1), and very common (prevalence = 0.2) respectively. The solid, dashed and dotted lines represent the statistical power profile of the study assuming subjects undergo health monitoring continuously, subjects undergo repeated measures every three years, and subjects undergo repeated measures every three years and the both environmental and genetic risk exposures are subject to measurement error (0.1 for environmental risk exposure and 0.01 for genetic risk exposure) respectively.</p

    Power Profile at Significance Level of 5×10<sup>−8</sup> for Gene-Environment Interaction.

    No full text
    <p>“A”, “B” and “C” represent diabetes, dementia and Parkinson’s disease respectively. “1”, “2” and “3” represent that both environmental and genetic risk factors are rare (prevalence = 0.01), common (prevalence = 0.1), and very common (prevalence = 0.2) respectively. The solid, dashed and dotted lines represent the statistical power profile of the study assuming subjects undergo health monitoring continuously, subjects undergo repeated measures every three years, and subjects undergo repeated measures every three years and the both environmental and genetic risk exposures are subject to measurement error (0.1 for environmental risk exposure and 0.01 for genetic risk exposure) respectively.</p
    corecore